
YU ISSN 1450-5932

MATHEMATICA MORAVICA

Special Vol.(2003)
MONOGRAPH

n-GROUPS

IN THE LIGHT

OF THE NEUTRAL OPERATIONS

By

Janez Ušan
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PREFACE

As a generalization of the notion of a group, the notion of an n-group was
introduced by W. Dornte in 1928 (Chapter I-1). In 1940 E. L. Post published
an extensive study of n-groups in which the well-known Post’s Coset Theorem
appeared. M. Hosszú (1963) and L. M. Gluskin (1965) described n-groups
for n ≥ 3 using one group, one automorphism of this group and a constant.
A description of n-groups (n ≥ 3) as algebras of the type 〈n, 1〉 with laws
was obtained by B. Gleichgewicht and K. Glazek in 1967 and several such
descriptions can be found in the papers [Celakoski 1977], [Dudek, Glazek,
Gleichgewicht 1977] and [Dudek 1995]. A significant contribution to the
theory of polyadic structures gave the group of algebraists from Skopje led
by Ǵ. Čupona. Categories of n-groups were considered by J. Michalski (for
example in [Michalski 1979]).Books devoted to n-groups were written by W.
A. Dudek and S. A. Rusakov ([Dudek 1990], [Rusakov 1992]).

This text is as an attempt to systematize the results concerning two
concepts related to the theory of n-ary structures. The first one is the concept
of (n−2)-ary {i, j}-neutral operation in n-groupoids (Chapter II-2), while the
second is the concept of (n− 1)-ary inverse operation in n-groups, which, in
fact, can be obtained using the neutral operation and a certain superposition
of the basic n-group operation (Chapter III-1).

While a groupoid contains at most one neutral element, for n > 2 there
are both n-groups without neutral elements and n-groups in which all the
elements are neutral. In contrast to this, as for n = 2, an n-groupoid can
have at most one (n − 2)-ary {i, j}-neutral operation (Chapter II-2). Also,
reduced to the binary case this concept gives the standard neutral element
of a groupoid.

For each n ≥ 2, every n-group has both an (n − 2)-ary {1, n}-neutral
operation and (n−1)-ary inverse operation, which in the binary case becomes
the usual inverse (Chapter III-1).

Establishing of two considered concepts provide several applications. So,
the {1, n}-neutral operation of an n-group has an important role in describing
of all nHG-algebras associated to the given n-group (Chapter IV). Similarly,
using these two operations a description of super-associative algebras with
n-quasigroup operations is presented in Chapter XI. In Chapter III n-groups
are characterized as algebras (Q, {A,−1 , e}) of the type 〈n, n− 1, n− 2〉 with
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the mutually independent laws.
The results systematized in this text have been published in [Ušan 1988-

2002], [Ušan, Žižović 1997-2002], [Ušan, Galić 2000, 2001] and [Žižović 1998].
The author is grateful to Branimir Šešelja, Dragan Acketa, Milan Grulović,

Miloš Kurilić and Ljubǐsa Kočinac for great help in translation of this text
in English.

Novi Sad, May 2003 Janez Ušan

A remark for the electronic version - 2005

In the electronic version 2005 there is a result and some new references.
Further on, in some parts of the text minor corrections are made.

Novi Sad, November 2005 Janez Ušan

P.S. In Ch. XVI of the hard version (n,m)−groups and NP−polyagroups
are described shortly (in only 6 pages, without proofs). In the survey ar-
ticle [Ušan 2005/1] (n,m)−groups are described in the light of the neu-
tral operations (in 50 pages) and in [Ušan 2005/2] the results concerning
NP−polyagroups are systematized (in 30 pages).

Reference [Gal’mak 2003] is a new book of n−groups.

A remark for the electronic version - 2006

In the electronic version 2006 there is Appendix3 and some new references.
Further on, in some parts of the text minor corrections are made.

Novi Sad, September 2006 Janez Ušan
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Chapter I

IN FEW WORDS ON n−GROUPS

1 Notion and examples

1.1. Definitions: Let n ≥ 2 and let (Q,A) be an n−groupoid. Then: 1) we

say that (Q,A) is an n−semigroup iff for every i, j ∈ {1, . . . , n}, i < j, the

following law holds

A(xi−1
1 , A(xi+n−1

i ), x2n−1
i+n ) = A(xj−1

1 , A(xj+n−1
j ), x2n−1

j+n )1

(:< i, j >-associative law); 2) we say that (Q,A) is an n−quasigroup iff for

every i ∈ {1, . . . , n} and for every an
1 ∈ Q there is exactly one xi ∈ Q such

that the following equality holds A(ai−1
1 , xi, a

n−1
i ) = an; and 3) we say that

(Q,A) is a Dörnte n−group (briefly: n−group) iff (Q, A) is an n−semigroup

and an n−quasigroup as well.

1.2. Remark: A notion of an n−group was introduced by W. Dörnte (in-

spired by E. Noether) in [Dörnte 1928] as a generalization of the notion of a

group.

1.3. Example: Let (Q, ·) be a group. Let also

A(xn
1 )

def
= x1 · . . . · xn

for each xn
1 ∈ Q. Then (Q,A) is an n−group.

Sketch of the prof.

a) A(A(xn
1 ), x2n−1

n+1 ) = (x1 · . . . · xn) · xn+1 · . . . · x2n−1

= x1 · . . . · xi−1 · (xi · . . . · xi+n−1) · xi+n · . . . · x2n−1

= A(xi−1
1 , A(xi+n−1

i ), x2n−1
i+n ).

1About the expression aq
p see Appendix I.
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b) A(ai−1
1 , x, an−1

i ) = an ⇐⇒ (a1 · . . . · ai−1) · x · (ai · . . . · an−1) = an. 2

1.4. Example: Let ({1, 2, 3, 4}, ·) be the
Klein group: Tab. 1. Further on, let ϕ be
the permutation of the set {1, 2, 4, 3} defined
in the following way

ϕ
def
=

(
1 2 3 4
1 2 4 3

)

· 1 2 3 4
1 1 2 3 4
2 2 1 4 3
3 3 4 1 2
4 4 3 2 1

Tab. 1
Let also

A(x, y, z)
def
= x · ϕ(y) · z · 2

for all x, y, z ∈ {1, 2, 3, 4}. Then ({1, 2, 3, 4}, A) is a 3–group.

Sketch of the prof.

a) ϕ2(= ϕ ◦ ϕ) = I, ϕ(2) = 2 and ϕ ∈ Aut({1, 2, 3, 4}, ·).

b) A(A(x, y, z), u, v) = (x · ϕ(y) · z · 2) · ϕ(u) · v · 2
= x · (ϕ(y) · z · 2 · ϕ(u)) · v · 2
a)
=x · ϕ(y · ϕ(z) · u · 2) · v · 2
A(x,A(y, z, u), v);

A(A(x, y, z), u, v) = (x · ϕ(y) · z · 2) · ϕ(u) · v · 2
= x · ϕ(y) · (z · 2 · ϕ(u) · v) · 2
A(x, y, A(z, u, v)).

c) A(a, b, c) = d ⇐⇒ a · ϕ(b) · c · 2 = d. 2

1.5. Example: Let p1
def
=

(
1 2 3
1 3 2

)
,

p2
def
=

(
1 2 3
3 2 1

)
and p3

def
=

(
1 2 3
2 1 3

)
;

Figure 1. Let also

A(x3
1)

def
= x1 ◦ x2 ◦ x3

for all x3
1 ∈ {p1, p2, p3}, where f ◦ g is

the composition of permutations. Then
({p1, p2, p3}, A) is a 3−group. [p1, p2 and p3

are odd permutations!]

• 3

1 • • 2

Figure 1
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Remark: This example is also in Chemistry–about ammonia (NH3). See, for

example, [Dudek 1990].

1.6.Remark: More examples see [Gal’mak, Vorob’ev 1998] and [Gal’mak

2003].

2 Hosszú–Gluskin Theorem

2.1. Theorem [Hosszú 1963, Gluskin 1965]: For every n−group (Q,A),

n ≥ 3, there is an algebra (Q, {·, ϕ, b}) [of the type < 2, 1, 0 >] such that

the following statements hold: (1) (Q, ·) is a group; (2) ϕ ∈ Aut(Q, ·); (3)

ϕ(b) = b; (4) for every x ∈ Q, ϕn−1(x) · b = b · x; and (5) for every xn
1 ∈

Q, A(xn
1 ) = x1 · ϕ(x2) · . . . · ϕn−1(xn) · b.

See, also Example 1.4. In detail in Chapter IV.

3 Post’s Coset Theorem

3.1. Theorem [Post 1940]: For every n−group (Q,A), n ≥ 3, there is a

group (Q, ·) and its normal subgroup (H, ·) such that: 1) Q ∈ Q/H; 2) the

factor–group (Q/H, 2) [of the group (Q, ·) over H] is a finite cyclic group,

and |Q/H| |(n− 1); and 3) for every xn
1 ∈ Q, A(xn

1 ) = x1 · . . . · xn.

See, also Example 1.5. The proof see in Appendix 3.

4 n−groups as algebras of the type

< n, n− 1, n− 2 > with laws

4.1. Theorem [Ušan 1997/2]: Let n ≥ 2 and let (Q,A) be an n−groupoid.

Then the following statements are equivalent: (i) (Q,A) is an n−group; (ii)
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there are mappings −1 and e, respectively, of the sets Qn−1 and Qn−2 into the

set Q such that the following laws hold in the algebra (Q, {A,−1 , e}) [of the

type < n, n− 1, n− 2 >]

(a) A(xn−2
1 , A(x2n−2

n−1 ), x2n−1) = A(xn−1
1 , A(x2n−1

n )),

(b) A(e(an−2
1 ), an−2

1 , x) = x and

(c) A((an−2
1 , a)−1, an−2

1 , a) = e(an−2
1 ); and

(iii) there are mappings −1 and e, respectively, of the sets Qn−1 and Qn−2

into the set Q such that the following laws hold in the algebra (Q, {A,−1 , e})
[of the type < n, n− 1, n− 2 >]

(a) A(A(xn
1 ), x2n−1

n+1 ) = A(x1, A(xn+1
2 ), x2n−1

n+2 ),

(b) A(x, an−2
1 , e(an−2

1 )) = x and

(c) A(a, an−2
1 , (an−2

1 , a)−1) = e(an−2
1 ).

The case n = 2 is described in [Dickson 1905] (cf. [Clifford, Preston

1964]). In detail Chapter III.

4.2. Remark: e is an {1, n}−neutral operation of n−groupoid (Q,A) iff

algebra (Q, {A, e}) [of the type < n, n − 2 >] satisfies the laws (b) and (b)

from 4.1 [Ušan 1988]. Operation −1 from 4.1 [(c), (c)] is a generalization of

the inverse operation in a group [Ušan 1994]. In details in Chapter II and

in Chapter III.
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Chapter II

TWO GENERALIZATIONS OF A NEUTRAL
ELEMENT OF A GROUPOID

1 Neutral element of n−groupoid

1.1. Definition: Let (Q,A) be an n−groupoid and let n ≥ 2. Then, e ∈ Q

is a neutral element of the n−groupoid (Q,A) iff for all i ∈ {1, . . . , n} and

for all x ∈ Q the following equality holds

(1) A(
i−1
e , x,

n−i
e ) = x.

1.2. Theorem [Čupona, Trpenovski 1961]: Let (Q,A) be an n−semigroup

and n ≥ 3. Then, (Q,A) has a neutral element iff there is a semigroup (Q, ·)
with a neutral element such that, for every xn

1 ∈ Q, the following equality

holds

A(xn
1 ) = x1 · . . . · xn.

Sketch of a part of the proof.

Let

(2) x · ydef
= A(x, y,

n−2
e ).

1) (x · y) · z = A(A(x, y,
n−2
e ), z,

n−2
e ) = A(x, y, A(

n−2
e , z, e),

n−3
e )

= A(x, y, A(z,
n−2
e , e),

n−3
e ) = A(x,A(y, z,

n−2
e ), e,

n−3
e )

= A(x,A(y, z,
n−2
e ),

n−2
e ) = x · (y · z).

2) x · e (2)
= A(x, e,

n−2
e ) = A(x,

n−1
e )

(1)
=x,

e · x (2)
= A(e, x,

n−2
e )

(1)
=x.
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3) A(xn
1 ) = A(A(xn

1 ),
n−1
e ) = A(x1, A(xn

2 , e),
n−2
e )

(2)
= x1 · A(xn

2 , e) = x1 · A(A(xn
2 , e),

n−1
e )

= x1 · A(x2, A(xn
3 ,

2
e),

n−2
e ) = x1 · x2 · A(xn

3 ,
2
e)

−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−

= x1 · . . . · xn−2 · A(xn
n−1,

n−2
e )

= x1 · . . . · xn−2 · A(A(xn
n−1,

n−2
e ),

n−1
e )

= x1 · . . . · xn−2 · A(xn−1, A(xn,
n−1
e ),

n−2
e )

= x1 · . . . · xn−2 · xn−1, ·A(xn,
n−1
e )

= x1 · . . . · xn−2 · xn−1, ·xn.

See, also [Čupona 1969]. 2

By Def. 1.1. from Chapter I and Th. 1.2. from Chapter II, we conclude

that the following proposition holds:

1.3. Corollary: Let (Q,A) be an n−group and n ≥ 3. Then, (Q,A) has a

neutral element iff there is a group (Q, ·) such that, for every xn
1 ∈ Q, the

following equality holds

A(xn
1 ) = x1 · . . . · xn.

Cf. [Belousov 1972] and [Kurosh 1974].

Furthermore, the following two propositions hold.

1.4. Proposition: If n ≥ 3, then there exists an n−group (Q,A) such that

every a ∈ Q is its neutral element. 1

Proof. By Example 1.3 from Chapter I if (Q, ·) is a Klein’s group

and n = 3 . 2

1.5. Proposition: If n ≥ 3, then there exists an n−group (Q,A) such that

no a ∈ Q is its neutral element.

1See, also [Žižović, Kočinac 1988].
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Proof. By Example 1.4 from Chapter I. 2

2 {i, j}−neutral operations of n−groupoids

2.1. Definitions [Ušan 1988]: Let n ≥ 2 and let (Q,A) be an n−groupoid.

Further on, let eL, eR and e be mappings of the set Qn−2 into the set Q. Let

also {i, j} ⊆ {1, . . . , n} and i < j. Then:

1) eL is a left {i, j}−neutral operation of the n−groupoid (Q,A) iff

the followingg formula is satisfied

(l) (∀at ∈ Q)n−2
1 (∀x ∈ Q)A(ai−1

1 , eL(an−2
1 ), aj−2

i , x, an−2
j−1 ) = x;

2) eR is a right {i, j}−neutral operation of the n−groupoid (Q,A) iff

the followingg formula holds

(r) (∀at ∈ Q)n−2
1 (∀x ∈ Q)A(ai−1

1 , x, aj−2
i , eR(an−2

1 ), an−2
j−1 ) = x; and

3) e is an {i, j}−neutral operation of the n−groupoid (Q,A) iff the

followingg formula holds

(n) (∀at ∈ Q)n−2
1 (∀x ∈ Q)(A(ai−1

1 , e(an−2
1 ), aj−2

i , x, an−2
j−1 ) = x ∧

A(ai−1
1 , x, aj−2

i , e(an−2
1 ), an−2

j−1 ) = x).

2.2. Remark: An {i, j}−neutral (left, right) operation of an n−groupoid is

a generalization of the notion of a neutral (left, right) element of a groupoid.

Namely, for n = 2, e(an−2
1 ) [= e(∅)] is a neutral (left, right) elememt of the

groupoid (Q,A) (: n− 2 = 0, i = 1, j = 2). Besides, e is a nulary operation

in the set Q.
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2.3. Proposition [Ušan 1988]: Let (Q, A) be an n-groupoid and n ≥ 2. Also

let {i, j} ⊆ {1, . . . , n} and i < j. Then there is at most one {i, j}−neutral

operation of (Q,A).

Proof. Suppose that e1 and e2 are {i, j}−neutral operations of an n-

groupoid (Q,A). Then, by Def. 2.1, for every sequence an−2
1 over Q the

following equalities hold

A(ai−1
1 , e1(a

n−2
1 ), aj−2

i , e2(a
n−2
1 ), an−2

j−1 ) = e2(a
n−2
1 ) and

A(ai−1
1 , e1(a

n−2
1 ), aj−2

i , e2(a
n−2
1 ), an−2

j−1 ) = e1(a
n−2
1 ),

whence we conclude that e1 = e2. 2

2.4. Proposition [Ušan 1988]: Let (Q,A) be an n−groupoid, n ≥ 2,

{i, j} ⊆ {1, . . . , n} and i < j. Then: if eL is a left {i, j}−neutral oper-

ation of (Q,A) and eR is a right {i, j}−neutral operation of (Q,A), then

eL = eR and e = eL = eR is an {i, j}−neutral operation of (Q,A).

Proof. By Def. 2.1, we conclude that for every sequence an−2
1 over Q the

following equalities hold

A(ai−1
1 , eL(an−2

1 ), aj−2
i , eR(an−2

1 ), an−2
j−1 ) = eR(an−2

1 ) and

A(ai−1
1 , eL(an−2

1 ), aj−2
i , eR(an−2

1 ), an−2
j−1 ) = eL(an−2

1 ),

whence we conclude that eL = eR. 2

2.5. Proposition [Ušan 1997/2]: Let (Q,A) be an n−groupoid and let

n ≥ 2. Further on, let the following statements hold:

(i) The < 1, n >-associative law holds in (Q,A);

(ii) For every sequence an−2
1 over Q, for every a ∈ Q and for every b ∈ Q,

there is at least one x ∈ Q such that the equality A(a, an−2
1 , x) = b holds;

and

(iii) For every sequence an−2
1 over Q, for every a ∈ Q and for every b ∈ Q,

there is at least one y ∈ Q such that the equality A(y, an−2
1 , a) = b holds.2

2For n = 2 it is a group. For n ≥ 3 there exist (Q, A) satisfying conditions (i) − (iii)
which are not n−groups.
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Then (Q, A) has a {1, n}−neutral operation.

Proof. Firstly we prove the following statements:

1◦ (Q,A) has a left {1, n}−neutral operation; and

2◦ (Q,A) has a right {1, n}−neutral operation.

The proof of 1◦ :

By (iii), for every sequence an−2
1 over Q and for every a ∈ Q there is at least

one e
(a)
L (an−2

1 ) ∈ Q such that the following equality holds

(1) A(e
(a)
L (an−2

1 ), an−2
1 , a) = a

On the other hand, by (ii), for every b ∈ Q and for every sequence kn−2
1 over

Q there is at least one k ∈ Q such that the following equality holds

(2) b = A(a, kn−2
1 , k).

By (1), (2) and (i), we conclude that the following series of equalities holds

A(e
(a)
L (an−2

1 ), an−2
1 , b)

(2)
= A(e

(a)
L (an−2

1 ), an−2
1 , A(a, kn−2

1 , k))
(i)
= A(A(e

(a)
L (an−2

1 ), an−2
1 , a), kn−2

1 , k)
(1)
= A(a, kn−2

1 , k)
(2)
= b,

whence we conclude that for every b ∈ Q and for every sequence an−2
1 over

Q the following equality holds

A(e
(a)
L (an−2

1 ), an−2
1 , b) = b,

i.e., that (Q,A) has the left {1, n}−neutral operation eL.

Similarly, it is possible to prove that there is a right {1, n}−neutral op-

eration eR in (Q,A) [:2◦].

Finally, by Proposition 2.4, we conclude that there is an {1, n}−neutral

operation e [= eL = eR]. 2

By Proposition 2.5 and Def. 1.1. from Chaper I, we conclude that the

following proposition holds:
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2.6. Theorem [Ušan 1988]: Every n−group (n ≥ 2) has an {1, n}−neutral

operation.

In Chapter V, n−groups with {i, j}−neutral operations for {i, j} 6= {1, n}
are described.
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Chapter III

n-GROUPS AS ALGEBRAS OF THE TYPE

< n, n− 1, n− 2 > WITH LAWS

1 One generalization of an inverse operation

in the group

1.1. Proposition: Let (Q,A) be an < 1, n >-associative n-groupoid, e its

{1, n}-neutral operation, and n ≥ 2. Further on, let E be an {1, 2n − 1}-
neutral operation of the (2n− 1)-groupoid (Q,

2

A), where
2

A(x2n−1
1 )

def
=

A(A(xn
1 ), x2n−1

n+1 ). Also let

(1) (an−2
1 , a)−1def

= E(an−2
1 , a, an−2

1 ).1

Then, for every an−2
1 , a, x ∈ Q the following equalities hold

A((an−2
1 , a)−1, an−2

1 , A(a, an−2
1 , x)) = x,

A(A(x, an−2
1 , a), an−2

1 , (an−2
1 , a)−1) = x,

A((an−2
1 , a)−1, an−2

1 , a) = e(an−2
1 ) and

A(a, an−2
1 , (an−2

1 , a)−1) = e(an−2
1 ).2

Sketch of the proof.

1) A((an−2
1 , a)−1, an−2

1 , A(a, an−2
1 , x)) = A(A((an−2

1 , a)−1, an−2
1 , a), an−2

1 , x)

=
2

A((an−2
1 , a)−1, an−2

1 , a, an−2
1 , x)

= x.

1[Ušan 1994].
2For n = 2, a−1 = E(a); a−1 is the inverse element of the element a with respect to

the neutral element e(∅) of the group (Q,A).
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2) A(A(x, an−2
1 , a), an−2

1 , (an−2
1 , a)−1) =

2

A(x, an−2
1 , a, an−2

1 , (an−2
1 , a)−1)

= x.

3) A((an−2
1 , a)−1, an−2

1 , a) = A((an−2
1 , a)−1, an−2

1 , A(a, an−2
1 , e(an−2

1 )))
1)
= e(an−2

1 ).

4) A(a, an−2
1 , (an−2

1 , a)−1) = A(A(e(an−2
1 ), an−2

1 , a), an−2
1 , (an−2

1 , a)−1)
2)
= e(an−2

1 ). 2

1.2. Proposition [Ušan 1997/2]: Let (Q,A) be an n−groupoid and let

n ≥ 2. Further on, let the following statements hold:

(i) The < 1, n >-associative law holds in (Q,A);

(ii) For every sequence an−2
1 over Q, for every a ∈ Q and for every

b ∈ Q, there is at least one x ∈ Q such that the equality A(a, an−2
1 , x) = b

holds; and

(iii) For every sequence an−2
1 over Q, for every a ∈ Q and for every

b ∈ Q, there is at least one y ∈ Q such that the equality A(y, an−2
1 , a) = b

holds.

Then there are mappings −1 and e, respectively, of the sets Qn−1 and Qn−2

into Q such that for every an−2
1 , a, x ∈ Q the following equalities hold

(a) A((an−2
1 , a)−1, an−2

1 , A(a, an−2
1 , x)) = x,

(b) A(A(x, an−2
1 , a), an−2

1 , (an−2
1 , a)−1) = x,

(c) A((an−2
1 , a)−1, an−2

1 , a) = e(an−2
1 ) and

(d) A(a, an−2
1 , (an−2

1 , a)−1) = e(an−2
1 ).

Proof. Firstly we prove the following statements:

1◦ (Q,A) has an {1, n}-neutral operation e;

2◦ (Q,
2

A), where
2

A(x2n−1
1 )

def
= A(A(xn

1 )x2n−1
n+1 ), is an < 1, 2n−1 >-associative

(2n− 1)-groupoid;

3◦ For every a2n−1
1 ∈ Q, there is at least one x ∈ Q and at least one y ∈ Q
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such that the following equalities

2

A(a2n−2
1 , x) = a2n−1 and

2

A(y, a2n−2
1 ) = a2n−1

hold; and

4◦ (Q,
2

A) has an {1, 2n− 1}-neutral operation E.

The proof of 1◦ :

By Proposition 2.5 from Chapter II.

Sketch of the proof of 2◦ :
2

A(
2

A(x, an−2
1 , y, bn−2

1 , z), cn−2
1 , u, dn−2

1 , v) =

A(A(A(A(x, an−2
1 , y), bn−2

1 , z), cn−2
1 , u), dn−2

1 , v) =

A(A(A(x, an−2
1 , y), bn−2

1 , z), cn−2
1 , A(u, dn−2

1 , v)) =

A(A(x, an−2
1 , y), bn−2

1 , A(z, cn−2
1 , A(u, dn−2

1 , v))) =

A(A(x, an−2
1 , y), bn−2

1 , A(A(z, cn−2
1 , u), dn−2

1 , v)) =

2

A(x, an−2
1 , y, bn−2

1 ,
2

A(z, cn−2
1 , u, dn−2

1 , v)).

Sketch of the proof of 3◦ :

2

A(a2n−2
1 , x) = a2n−1 ⇐⇒ A(A(an

1 ), a2n−2
n+1 , x) = a2n−1 and

2

A(y, a2n−2
1 ) = a2n−1 ⇐⇒ A(y, an−2

1 , A(a2n−2
n−1 )) = a2n−1.

The proof of 4◦ :

By 2◦, 3◦ and Proposition 2.5 from Chapter II.

Finally by 1◦, 4◦, (1) and Proposition 1.1, we conclude that the equalities

(a)− (d) hold. 2

By Proposition 1.2, Theorem 2.6 from Chapter II, Def. 2.1 from Chapter

II and Def. 1.1 from Chapter I, we conclude that the following proposition

holds:

1.3. Theorem [Ušan 1988, 1994]: Let (Q,A) be an n-group and n ≥ 2.
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Then there are mappings −1 and e, respectively, of the sets Qn−1 and Qn−2

into Q such that for every an−2
1 , a, x ∈ Q the following equalities hold

A((an−2
1 , a)−1, an−2

1 , A(a, an−2
1 , x)) = x,

A(A(x, an−2
1 , a), an−2

1 , (an−2
1 , a)−1) = x,

A((an−2
1 , a)−1, an−2

1 , a) = e(an−2
1 ),

A(a, an−2
1 , (an−2

1 , a)−1) = e(an−2
1 ),

A(e(an−2
1 ), an−2

1 , x) = x and

A(x, an−2
1 , e(an−2

1 )) = x.

2 Auxiliary propositions

2.1. Proposition [Ušan 1997/2]: Let (Q,A) be an n−groupoid and let

n ≥ 3. Then the following statements hold:

(I) If (a) the < 1, 2 >-associative law holds in (Q,A), and (b) for every

an−1
1 , x, y ∈ Q the following implication holds

A(x, an−1
1 ) = A(y, an−1

1 ) ⇒ x = y,

then (Q,A) is an n-semigroup; and

(II) If (a) the < n − 1, n >-associative law holds in (Q, A), and (b) for

every an−1
1 , x, y ∈ Q the following implication holds

A(an−1
1 , x) = A(an−1

1 , y) ⇒ x = y,

then (Q,A) is an n-semigroup.

Proof. In the proof of the proposition we use the method of E. I. Sokolov

from [Sokolov 1976] [ from the Theorem 1 in [Sokolov 1976]].

Sketch of the proof of the statement (I):

A(ai−1
1 , A(ai+n−1

i ), a2n−1
i+n ) = A(ai

1, A(ai+n
i+1 ), a2n−1

i+n+1) ⇒
A(b1, A(ai−1

1 , A(ai+n−1
i ), a2n−1

i+n ), bn−1
2 ) =
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A(b1, A(ai
1, A(ai+n

i+1 ), a2n−1
i+n+1), b

n−1
2 )

(a)⇒
A(A(b1, a

i−1
1 , A(ai+n−1

i ), a2n−2
i+n ), a2n−1, b

n−1
2 ) =

A(A(b1, a
i
1, A(ai+n

i+1 ), a2n−2
i+n+1), a2n−1, b

n−1
2 )

(b)⇒
A(b1, a

i−1
1 , A(ai+n−1

i ), a2n−2
i+n ) = A(b1, a

i
1, A(ai+n

i+1 ), a2n−2
i+n+1).

Similarly, it is possible to prove that the statement (II) also holds. 2

2.2. Proposition: Let (Q,A) be an n−groupoid and let n ≥ 3. Also let the

following statements hold:

(i) (Q,A) is an n−semigroup;

(ii) For every an
1 ∈ Q there is exactly one x ∈ Q such that the following

equality holds

A(an−1
1 , x) = an; and

(iii) For every an
1 ∈ Q there is exactly one y ∈ Q such that the following

equality holds

A(y, an−1
1 ) = an.

Then (Q, A) is an n−group.

Proof. Firstly we prove the following statements:

1◦ For every i ∈ {1, . . . , n − 2}, for every a, b, x, y ∈ Q and for every

sequence an−3
1 over Q the following implications hold

(a) A(a, ai−1
1 , x, an−3

i , b) = A(a, ai−1
1 , y, an−3

i , b) ⇒ x = y and

(b) A(a, an−3
i , x, ai−1

1 , b) = A(a, an−3
i , y, ai−1

1 , b) ⇒ x = y;

2◦ For every i ∈ {1, . . . , n−2}, for every a, b, c ∈ Q and for every sequence

an−3
1 over Q there is at least one x ∈ Q such that

A(a, ai−1
1 , x, an−3

i , b) = c; and

3◦ (Q,A) is an n−quasigroup.

Sketch of the proof of 1◦ :

a) A(a, ai−1
1 , x, an−3

i , b) = A(a, ai−1
1 , y, an−3

i , b) ⇒
A(cn−1

i+1 , A(a, ai−1
1 , x, an−3

i , b), ci
1) = A(cn−1

i+1 , A(a, ai−1
1 , y, an−3

i , b), ci
1)

(i)⇒
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A(A(cn−1
i+1 , a, ai−1

1 , x), an−3
i , b, ci

1) = A(A(cn−1
i+1 , a, ai−1

1 , y), an−3
i , b, ci

1)
(iii)⇒

A(cn−1
i+1 , a, ai−1

1 , x) = A(cn−1
i+1 , a, ai−1

1 , y)
(ii)⇒x = y.

b) A(a, an−3
i , x, ai−1

1 , b) = A(a, an−3
i , y, ai−1

1 , b) ⇒
A(ci

1, A(a, an−3
i , x, ai−1

1 , b), cn−1
i+1 ) = A(ci

1, A(a, an−3
i , y, ai−1

1 , b), cn−1
i+1 )

(i)⇒
A(ci

1, a, an−3
i , A(x, ai−1

1 , b, cn−1
i+1 )) = A(ci

1, a, an−3
i , A(y, ai−1

1 , b, cn−1
i+1 ))

(ii)⇒
A(x, ai−1

1 , b, cn−1
i+1 ) = A(y, ai−1

1 , b, cn−1
i+1 )

(iii)⇒x = y.

Sketch of the proof of 2◦ :

A(a, ai−1
1 , x, an−3

i , b) = c
1◦(b)⇐⇒

A(cn−1
i+1 , A(a, ai−1

1 , x, an−3
i , b), ci

1) = A(cn−1
i+1 , c, ci

1)
(i)⇐⇒

A(A(cn−1
i+1 , a, ai−1

1 , x), an−3
i , b, ci

1) = A(cn−1
i+1 , c, ci

1),

where cn−1
1 is an arbitrary sequence over Q. Whence, by (iii) and by (ii),

we conclude that the statement 2◦ holds.

The proof of 3◦ : By (ii), (iii), 1◦ − (a) and by 2◦.

Finally, by (i), 3◦ and by Def. 1.1 from Chapter I, we conclude that the

(Q, A) is an n−group. 2

By Proposition 2.1 and Def. 1.1 from Chapter I, we conclude that the

following proposition holds:

2.3. Proposition: Let (Q,A) n−groupoid and n ≥ 3. Also let the following

statements hold:

(1) The < 1, 2 >-associative [or < n− 1, n >-associative] law holds in

(Q, A); and

(2) (Q,A) is an n-quasigroup.

Then (Q,A) is an n−group.3

3See, also [Sokolov 1976] and [Dudek, Glazek, Gleichgewicht 1977].
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3 Main propositions

3.1. Theorem [Ušan 1997/2]: Let (Q,A) be an n−groupoid and n ≥ 2.

Then: (Q,A) is an n−group iff there are mappings −1 and e, respectively, of

the sets Qn−1 and Qn−2 into the set Q such that the following laws hold in

the algebra (Q, {A,−1 , e) [of the type < n, n− 1, n− 2 >]

(1) A(xn−2
1 , A(x2n−2

n−1 ), x2n−1) = A(xn−1
1 , A(x2n−1

n )),

(2) A(e(an−2
1 ), an−2

1 , x) = x and

(3) A((an−2
1 , a)−1, an−2

1 , a) = e(an−2
1 ).

Proof. 1) =⇒: By Def. 1.1 from Chapter I and Theorem 1.3 from Chapter

III.

2) ⇐=: Firstly we prove the following statements:

1◦ For every an−1
1 , x, y ∈ Q

A(an−1
1 , x) = A(an−1

1 , y) ⇒ x = y;

2◦ (Q, A) is an n−semigroup;

3◦ (∀ai ∈ Q)n−2
1 (∀x ∈ Q)A(x, an−2

1 , e(an−2
1 )) = x;

4◦ (∀ai ∈ Q)n−2
1 (∀a ∈ Q)A(a, an−2

1 , (an−2
1 , a)−1) = e(an−2

1 );

5◦ For every an−1
1 , x, y ∈ Q

A(x, an−1
1 ) = A(y, an−1

1 ) ⇒ x = y; and

6◦ For every an
1 ∈ Q there is exactly one x ∈ Q and exactly one y ∈ Q

such that the following equalities hold

A(an−1
1 , x) = an and A(y, an−1

1 ) = an.

Sketch of the proof of the statement 1◦ :

a) The case n = 2 :
A(a, x) = A(a, y) ⇒ A(a−1, A(a, x)) = A(a−1, A(a, y))

(1)⇒A(A(a−1, a), x) = A(A(a−1, a), y)
(3)⇒A(e(∅), x) = A(e(∅), y)

(2)⇒x = y;
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b) The case n > 2 :

A(an−2
1 , a, x) = A(an−2

1 , a, y) ⇒
A(e(cn−3

1 , a), cn−3
1 , e(an−2

1 ), A(an−2
1 , a, x)) =

A(e(cn−3
1 , a), cn−3

1 , e(an−2
1 ), A(an−2

1 , a, y))
(1)⇒

A(e(cn−3
1 , a), cn−3

1 , A(e(an−2
1 ), an−2

1 , a), x) =

A(e(cn−3
1 , a), cn−3

1 , A(e(an−2
1 ), an−2

1 , a), y)
(2)⇒

A(e(cn−3
1 , a), cn−3

1 , a, x) = A(e(cn−3
1 , a), cn−3

1 , a, y)
(2)⇒x = y.

The proof of the statement 2◦ :

For n ≥ 3, by 1◦ and Proposition 2.1. For n = 2 :(1).

Sketch of the proof of the statement 3◦ :

A(a, an−2
1 , e(an−2

1 )) = b ⇒
A((an−2

1 , a)−1, an−2
1 , A(a, an−2

1 , e(an−2
1 ))) = A((an−2

1 , a)−1, an−2
1 , b)

2◦
=⇒

A(A((an−2
1 , a)−1, an−2

1 , a), an−2
1 , e(an−2

1 )) = A((an−2
1 , a)−1, an−2

1 , b)
(3)⇒

A(e(an−2
1 ), an−2

1 , e(an−2
1 )) = A((an−2

1 , a)−1, an−2
1 , b)

(2)⇒
e(an−2

1 ) = A((an−2
1 , a)−1, an−2

1 , b)
(3)⇒

A((an−2
1 , a)−1, an−2

1 , a) = A((an−2
1 , a)−1, an−2

1 , b)
1◦

=⇒a = b.

Sketch of the proof of the statement 4◦ :

A(a, an−2
1 , (an−2

1 , a)−1) = b ⇒
A((an−2

1 , a)−1, an−2
1 , A(a, an−2

1 , (an−2
1 , a)−1)) =

A((an−2
1 , a)−1, an−2

1 , b)
2◦⇒

A(A((an−2
1 , a)−1, an−2

1 , a), an−2
1 , (an−2

1 , a)−1) =

A((an−2
1 , a)−1, an−2

1 , b)
(3)⇒

A(e(an−2
1 ), an−2

1 , (an−2
1 , a)−1) = A((an−2

1 , a)−1, an−2
1 , b)

(2),3◦
=⇒

A((an−2
1 , a)−1, an−2

1 , e(an−2
1 )) = A((an−2

1 , a)−1, an−2
1 , b)

1◦⇒b = e(an−2
1 ).

Sketch of the proof of the statement 5◦ :

A(x, an−2
1 , a) = A(y, an−2

1 , a) ⇒
A(A(x, an−2

1 , a), an−2
1 , (an−2

1 , a)−1) = A(A(y, an−2
1 , a), an−2

1 , (an−2
1 , a)−1)

2◦⇒
A(x, an−2

1 , A(a, an−2
1 , (an−2

1 , a)−1)) = A(y, an−2
1 , A(a, an−2

1 , (an−2
1 , a)−1))

4◦⇒
A(x, an−2

1 , e(an−2
1 )) = A(y, an−2

1 , e(an−2
1 ))

3◦⇒x = y.

Sketch of the proof of the statement 6◦ :
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a) A(x, an−2
1 , a) = b

5◦⇔
A(A(x, an−2

1 , a), an−2
1 , (an−2

1 , a)−1) = A(b, an−2
1 , (an−2

1 , a)−1)
2◦⇔

A(x, an−2
1 , A(a, an−2

1 , (an−2
1 , a)−1)) = A(b, an−2

1 , (an−2
1 , a)−1)

4◦⇔
A(x, an−2

1 , e(an−2
1 )) = A(b, an−2

1 , (an−2
1 , a)−1)

3◦⇔
x = A(b, an−2

1 , (an−2
1 , a)−1).

b) A(a, an−2
1 , y) = b

1◦⇔
A((an−2

1 , a)−1, an−2
1 , A(a, an−2

1 , y)) = A((an−2
1 , a)−1, an−2

1 , b)
2◦⇔

A(A((an−2
1 , a)−1, an−2

1 , a), an−2
1 , y) = A((an−2

1 , a)−1, an−2
1 , b)

(3)⇔
A(e(an−2

1 ), an−2
1 , y) = A((an−2

1 , a)−1, an−2
1 , b)

(2)⇔
y = A((an−2

1 , a)−1, an−2
1 , b).

Finally, by 2◦ and 6◦ for n = 2 and 2◦, 6◦ and Proposition 2.2 for n ≥ 3, we

conclude that (Q,A) is an n−group. 2

3.2. Theorem [Ušan 1997/2]: Let (Q,A) be an n−groupoid and n ≥ 2.

Then there is at most one pair of mappings −1 and e, respectively, of the

sets Qn−1 and Qn−2 into the set Q such that the laws (1)-(3) from Theorem

3.1 hold in the algebra (Q, {A,−1 , e}) of the type < n, n− 1, n− 2 > .

Proof. Assume that there are mappings
−1k : Qn−1 → Q and ek : Qn−2 → Q, k ∈ {1, 2},

such that the laws (1)-(3) from Theorem 3.1 hold in the algebras (Q, {A,−11 , e1})
and (Q, {A,−12 , e2}). Whence, by Th. 3.1, we conclude that the following

statement holds:

1* (Q,A) is an n−group.

By 1*, by Th. 2.6 from Chapter II, and by Prop. 2.3 from Chapter II, we

conclude that the following statement holds:

2* e1 = e2 (= e).

In addition, by 2* and by (3) from Th. 3.1, we conclude that the following

statement holds:

3* for all a ∈ Q and for every sequence an−2
1 over Q, the following equal-
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ities hold

A((an−2
1 , a)−11 , an−2

1 , a) = e(an−2
1 ) and A((an−2

1 , a)−12 , an−2
1 , a) = e(an−2

1 ).

Finally, by 1*, 3* and by Def. 1.1 from Chapter I, we conclude that for all

a ∈ Q and for every sequence an−2
1 over Q the following equality holds

(an−2
1 , a)−11 = (an−2

1 , a)−12 ,

i.e., that −11 =−12 .

3.3. Theorem [Ušan 1997/2]: The laws (1)-(3) from Theorem 3.1 are

mutually independent.

Proof. a) The laws (1) and (2) from Th. 3.1 hold in the algebra (Q, {A,−1 , e})
of the type < n, n − 1, n − 2 >, where n ≥ 2, |Q| > 1, A(xn

1 )
def
= xn,

−1 an

arbitrary (n − 1)−ary operation in Q and e(an−2
1 )

def
= c−constant. However,

the law (3) from Th. 3.1 does not hold.

b) The laws (1) and (3) from Th. 3.1 hold in the algebra (Q, {A,−1 , e}) of

the type < n, n− 1, n− 2 >, where n ≥ 2, |Q| > 1, A(xn
1 )

def
= x1, e(an−2

1 )
def
= c-

constant and (an−2
1 , a)−1def

= e(an−2
1 ). However, the law (2) from Th. 3.1 does

not hold.

c1) The case n > 2 : Let (Q, 2) be a group, −1 its inverse operation, and

let (Q,B) be an (n− 2)−groupoid which is not an (n − 2)−quasigroup [for

n = 3 : B 6∈ Q!]. Then (Q, A), where

A(x, an−2
1 , y)

def
= x2(B(an−2

1 ))−12y,

satisfies conditions of Proposition 2.5 from Chapter II and of Proposition

1.2 from Chapter III. Thus, there is an algebra (Q, {A,−1 , e}) of the type

< n, n−1, n−2 >, in which the laws (2) and (3) from Th. 3.1 hold. However,

the law (1) fails to hold in (Q, {A,−1 , e). Indeed, if the law (1) from Th. 3.1

holds in (Q, {A,−1 , e}), then by the Th. 3.1 (Q,A) is an n−group, which

contradicts the assumption that (Q,B) is not an (n − 2)−quasigroup [for

n = 3 : B ∈ Q!].

c2) The case n = 2 : Let (Q,A) be a Moufang loop which is not a group,

let e = e(∅) be its neutral element and −1 its inverse operation (cf. [Bruck
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1958] or [Belousov 1967]). Then the laws (2) and (3) from Th. 3.1 hold in

the algebra (Q, {A,−1 , e}) of the type < 2, 1, 0 > . However, the law (1) does

not hold. 2

In this way, an algebra (Q, {A,−1 , e}) of the type < n, n − 1, n − 2 > is

associated to every n−group (Q,A); Th. 1.3. Among laws which hold in this

algebra, we point out the following ones:

(1L) A(A(xn
1 ), x2n−1

n+1 ) = A(x1, A(xn+1
2 ), x2n−1

n+2 ),

(1R) A(xn−2
1 , A(x2n−2

n−1 ), x2n−1) = A(xn−1
1 , A(x2n−1

n )),

(2L) A(e(an−2
1 ), an−2

1 , x) = x,

(2R) A(x, an−2
1 , e(an−2

1 )) = x,

(3L) A((an−2
1 , a)−1, an−2

1 , a) = e(an−2
1 ),

(3R) A(a, , an−2
1 , (an−2

1 , a)−1) = e(an−2
1 ),

(4L) A((an−2
1 , a)−1, an−2

1 , A(a, an−2
1 , x)) = x and

(4R) A(A(x, an−2
1 , a), an−2

1 , (an−2
1 , a)−1) = x.4

Further on, among the above laws, we choose six [for n = 2 four5] systems

of three laws, as described in tables 1-6 [the laws which are represented by

marked fields in Tables 1-6]. Namely, the following proposition holds:

3.4. Theorem [Ušan 1997/2]: Let (Q,A) be an n−groupoid and n ≥ 2.

Then the following statement holds:

(ai) (Q,A) is an n−group iff there are mappings −1 and e, respectively,
of the sets Qn−1 and Qn−2 into
the set Q such that in the alge-
bra (Q, {A,−1 , e}) of the type <
n, n − 1, n − 2 > the laws from
the marked fields from the Table
i, i ∈ {1, . . . , 6}, hold;

L R
1 •
2 •
3 •
4

L R
1 •
2 •
3 •
4

L R
1 •
2 •
3
4 •

Tabl. 1 Tabl. 2 Tabl. 3

4(1) = (1R), (2) = (2L) and (3) = (3L), where laws (1)-(3) are from Th. 3.1.
5For n = 2, (1L) = (1R).
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(bi) There is at most one pair of
mappings −1 and e, respectively,
of the sets Qn−1 and Qn−2 into
the set Q such that in the alge-
bra (Q, {A,−1 , e}) of the type <
n, n − 1, n − 2 > the laws table
i, i ∈ {1, . . . , 6} hold; and

L R
1 •
2 •
3
4 •

L R
1 •
2 •
3
4 •

L R
1 •
2 •
3
4 •

Tabl. 4 Tabl. 5 Tabl. 6

(ci) The laws from the marked fields from the Table i, i ∈ {1, . . . , 6}, are

mutually independent.

Proof. 1) i = 1 : Th. 3.4 – (a1) is a Th. 3.1, Th. 3.4 – (b1) is a Th. 3.2,

and Th. 3.4 – (c1) is a Th. 3.3.

2) The proof of (ai), i ∈ {2, . . . , 6} :

i = 2 : Similarly to the proof of Th. 3.1; Table 1 and Table 2.

i = 3 : Firstly we prove the following statements:
◦1 A(x, an−2

1 , a) = A(y, an−2
1 , a) ⇒ x = y for all x, y, a, an−2

1 ∈ Q;
◦2 (Q,A) is an n−semigroup;
◦3 A(a, an−2

1 , (an−2
1 , a)−1) = e(an−2

1 ) for all a, an−2
1 ∈ Q; and

◦4 A(x, an−2
1 , e(an−2

1 )) = x.

The proof of ◦1 : By (4R).

The proof of ◦2 : By ◦1, and by Prop. 2.1.

Sketch of the proof of ◦3 :

e(an−2
1 )

(4R)
= A(A(e(an−2

1 ), an−2
1 , a), an−2

1 , (an−2
1 , a)−1)

◦2
=A(e(an−2

1 ), an−2
1 , A(a, an−2

1 (an−2
1 , a)−1))

(2L)
= A(a, an−2

1 , (an−2
1 , a)−1).

Sketch of the proof of ◦4 :

x
(4R)
= A(A(x, an−2

1 , a), an−2
1 , (an−2

1 , a)−1)
◦2
=A(x, an−2

1 , A(a, an−2
1 (an−2

1 , a)−1))
◦3
=A(x, an−2

1 , e(an−2
1 )).

Finally, by ◦2, ◦3[= (3R)], ◦4[= (2R)], and by Th. 3.4 – (a2), we conclude

that Th. 3.4 – (a3) holds.

i = 4 : For n = 2 the case ”i = 4” coincides with the case ”i = 3”. Let
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n ≥ 3. Firstly we prove the following statements:

1 A(an−2
1 , a, x) = A(an−2

1 , a, y) ⇒ x = y for all x, y, a, an−2
1 ∈ Q;

2 (Q,A) is an n−semigroup;

3 A(a, an−2
1 , (an−2

1 , a)−1) = e(an−2
1 ) for all a, an−2

1 ∈ Q; and

4 A(x, an−2
1 , e(an−2

1 )) = x for all x, an−2
1 ∈ Q.

Sketch of the proof of 1 :

A(an−2
1 , a, x) = A(an−2

1 , a, y) ⇒
A(e(

n−2
a ),

n−3
a , e(an−2

1 ), A(an−2
1 , a, x)) = A(e(

n−2
a ),

n−3
a , e(an−2

1 ), A(an−2
1 , a, y)) ⇒

A(e(
n−2
a ),

n−3
a , A(e(an−2

1 ), an−2
1 , a), x) = A(e(

n−2
a ),

n−3
a , A(e(an−2

1 ), an−2
1 , a), y) ⇒

A(e(
n−2
a ),

n−3
a , a, x) = A(e(

n−2
a ),

n−3
a , a, y) ⇒ x = y.

The proof of 2 : By 1, and by Prop. 2.1.

Sketch of the proof of 3 :

e(an−2
1 )

(4R)
= A(A(e(an−2

1 ), an−2
1 , a), an−2

1 , (an−2
1 , a)−1)

2
=A(e(an−2

1 ), an−2
1 , A(a, an−2

1 , (an−2
1 , a)−1))

(2L)
= A(a, an−2

1 , (an−2
1 , a)−1).

Sketch of the proof of 4 :

x
(4R)
= A(A(x, an−2

1 , a), an−2
1 , (an−2

1 , a)−1)
2
=A(x, an−2

1 , A(a, an−2
1 (an−2

1 , a)−1))
3
=A(x, an−2

1 , e(an−2
1 )).

Finally, by 2, 3[= (3R)], 4[= (2R)], and by Th. 3.4 – (a2), we conclude that

Th. 3.4 – (a4) holds.

i = 5 : Firstly we prove the following statements:

1̂ A(a, an−2
1 , x) = A(a, an−2

1 , y) ⇒ x = y for all x, y, a, an−2
1 ∈ Q;

2̂ (Q,A) is an n−semigroup;

3̂ A((an−2
1 , a)−1, an−2

1 , a) = e(an−2
1 ) for all a, an−2

1 ∈ Q; and

4̂ A(e(an−2
1 ), an−2

1 , x) = x for all x, an−2
1 ∈ Q.

The proof of 1̂ : By (4L).

The proof of 2̂ : By 1̂, and by Prop. 2.1.

Sketch of the proof of 3̂ :
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e(an−2
1 )

(4L)
= A((an−2

1 , a)−1, an−2
1 , A(a, an−2

1 , e(an−2
1 )))

2̂
=A(A((an−2

1 , a)−1, an−2
1 , a), an−2

1 , e(an−2
1 ))

(2R)
= A((an−2

1 , a)−1, an−2
1 , a).

Sketch of the proof of 4̂ :

x
(4L)
= A((an−2

1 , a)−1, an−2
1 , A(a, an−2

1 , x))
2̂
=A(A((an−2

1 , a)−1, an−2
1 , a), an−2

1 , x))
3̂
=A(e(an−2

1 ), an−2
1 , x).

Finally, by 2̂, 3̂[= (3L)], 4̂[= (2L)], and by 3.4 – (a1)[= Th.3.1], we conclude

that Th. 3.4 – (a5) holds.

i = 6 : For n = 2 the case ”i = 6” coincides with the case ”i = 5”. Let

n ≥ 3. Firstly we prove the following statements:

1 A(x, a, an−2
1 ) = A(y, a, an−2

1 ) ⇒ x = y for all x, y, a, an−2
1 ∈ Q;

2 (Q, A) is an n−semigroup;

3 A((an−2
1 , a)−1, an−2

1 , a) = e(an−2
1 ) for all a, an−2

1 ∈ Q; and

4 A(e(an−2
1 ), an−2

1 , x) = x for all x, an−2
1 ∈ Q.

Sketch of the proof of 1 :

A(x, a, an−2
1 ) = A(y, a, an−2

1 ) ⇒
A(A(x, a, an−2

1 ), e(an−2
1 ),

n−3
a , e(

n−2
a )) = A(A(y, a, an−2

1 ), e(an−2
1 ),

n−3
a , e(

n−2
a )) ⇒

A(x,A(a, an−2
1 , e(an−2

1 )),
n−3
a , e(

n−2
a )) = A(y, A(a, an−2

1 , e(an−2
1 )),

n−3
a , e(

n−2
a )) ⇒

A(x, a,
n−3
a , e(

n−2
a )) = A(y, a,

n−3
a , e(

n−2
a )) ⇒ x = y.

The proof of 2 : By 1, and by Prop. 2.1.

Sketch of the proof of 3 :

e(an−2
1 )

(4L)
= A((an−2

1 , a)−1, an−2
1 , A(a, an−2

1 , e(an−2
1 )))

2
=A(A((an−2

1 , a)−1, an−2
1 , a), an−2

1 , e(an−2
1 ))

(2R)
= A((an−2

1 , a)−1, an−2
1 , a).

Sketch of the proof of 4 :

x
(4L)
= A((an−2

1 , a)−1, an−2
1 , A(a, an−2

1 , x))
2
=A(A((an−2

1 , a)−1, an−2
1 , a), an−2

1 , x)
3
=A(e(an−2

1 ), an−2
1 , x).
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Finally, by 2, 3[= (3L)], 4[= (2L)], and Th. 3.4 – (a1) [=Th. 3.1], we

conclude that Th. 3.4 – (a6) holds.

3) The proof of (bi), i ∈ {2, . . . , 6} :

By Th. 3.4−(ai), by Th. 2.6 from Chapter II, by Prop. 2.3 from Chapter

II, and by Def. 1.1 from Chapter I. (See, the proof of Th. 3.2.)

4) The proof of (ci), i ∈ {2, . . . , 6} :

41) The proof of (c2) :

a) The laws (1L) and (2R) hold in the algebra (Q, {A,−1 , e}) of the type

< n, n − 1, n − 2 >, where n ≥ 2, |Q| > 1, A(xn
1 )

def
= x1 for all xn

1 ∈ Q, −1

an arbitrary (n− 1)−ary operation in Q and e(an−2
1 ) = c for every sequence

an−2
1 over Q. However, the law (3R) does not hold.

b) The laws (1L) and (3R) hold in the algebra (Q, {A,−1 , e}) of the type

< n, n − 1, n − 2 >, where n ≥ 2, |Q| > 1, A(xn
1 )

def
= xn for all xn

1 ∈ Q,

e(an−2
1 ) = c for every sequence an−2

1 over Q and (an−2
1 , a)−1 = e(an−2

1 ) for all

a, an−2
1 ∈ Q. However, the law (2R) does not hold.

c) See the proof of Th. 3.3.

42) The proof of (c3) :

a) The laws (1L) and (2L) hold in the algebra (Q, {A,−1 , e}) of the type

< n, n − 1, n − 2 >, where n ≥ 2, |Q| > 1, A(xn
1 )

def
= xn for all xn

1 ∈ Q, e an

arbitrary (n−2)−ary operation in Q, and (an−2
1 , a)−1 = c for all a, an−2

1 ∈ Q.

However, the law (4R) does not hold.

b) The laws (1L) and (4R) hold in the algebra (Q, {A,−1 , e}) of the type

< n, n − 1, n − 2 >, where n ≥ 2, |Q| > 1, A(xn
1 ) = x1 for all xn

1 ∈ Q, −1

an arbitrary (n− 1)−ary operation in Q, and e(an−2
1 ) = c for every sequence

an−2
1 over Q. However, the law (2L) does not hold.

c) See the proof of Th. 3.3. (In Moufang’s loop (Q,A), also the following

laws hold: A(a−1, A(a, x)) = x and A(A(x, a), a−1) = x; for example [Bruck

1958] and [Belousov 1967].)
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Similarly, it is possible to prove the statements (c4)− (c6). 2

3.5. Remark: Th. 3.4–(a1) for n = 2 is proved in [Dickson 1905]. (Cf.

[Cliford, Preston 1964].)
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Chapter IV

HOSSZÚ-GLUSKIN ALGEBRAS AND n−GROUPS

1 Auxiliary propositions

1.1. Proposition [Ušan 1995/1]: Let (Q,A) be an n−group, e its {1, n}−neutral

operation and n ≥ 3. Then, for every an−2
1 , bn−2

1 , x ∈ Q and for all i ∈
{1, . . . , n− 1} the following equalities hold

A(x, bn−2
i , e(bn−2

1 ), bi−1
1 ) = A(e(an−2

1 ), an−2
1 , x) and

A(bn−2
i , e(bn−2

1 ), bi−1
1 , x) = A(x, an−2

1 , e(an−2
1 )).

Sketch of the proof.

1) F (x, bn−2
1 )

def
= A(x, bn−2

i , e(bn−2
1 ), bi−1

1 ) ⇒
A(F (x, bn−2

1 ), bn−2
i , e(bn−2

1 ), bi−1
1 ) = A(A(x, bn−2

i , e(bn−2
1 ), bi−1

1 ), bn−2
i , e(bn−2

1 ), bi−1
1 ) ⇒

A(F (x, bn−2
1 ), bn−2

i , e(bn−2
1 ), bi−1

1 ) = A(x, bn−2
i , A(e(bn−2

1 ), bn−2
1 , e(bn−2

1 )), bi−1
1 ) ⇒

A(F (x, bn−2
1 ), bn−2

i , e(bn−2
1 ), bi−1

1 ) = A(x, bn−2
i , e(bn−2

1 ), bi−1
1 ) ⇒

F (x, bn−2
1 ) = x ⇒

A(x, bn−2
i , e(bn−2

1 ), bi−1
1 ) = A(e(an−2

1 ), an−2
1 , x);

2) F (x, bn−2
1 )

def
= A(bn−2

i , e(bn−2
1 ), bi−1

1 , x) ⇒
A(bn−2

i , e(bn−2
1 ), bi−1

1 , F (x, bn−2
1 )) = A(bn−2

i , e(bn−2
1 ), bi−1

1 , A(bn−2
i , e(bn−2

1 ), bi−1
1 , x)) ⇒

A(bn−2
i , e(bn−2

1 ), bi−1
1 , F (x, bn−2

1 )) = A(bn−2
i , A(e(bn−2

1 ), bn−2
1 , e(bn−2

1 )), bi−1
1 , x) ⇒

A(bn−2
i , e(bn−2

1 ), bi−1
1 , F (x, bn−2

1 )) = A(bn−2
i , e(bn−2

1 ), bi−1
1 , x) ⇒

F (x, bn−2
1 ) = x ⇒

A(bn−2
i , e(bn−2

1 ), bi−1
1 , x) = A(x, an−2

1 , e(an−2
1 )). 2

1.2. Proposition[Ušan 1995/1]: Let (Q,A) be an n−group, −1 its inverse

operation and n ≥ 2. Then for every sequence an−1
1 over Q there is exactly

one x ∈ Q such that the equality
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(an−2
1 , x)−1 = an−1

holds.

Proof. Firstly we prove the following statements:

1◦ For all an−2
1 , x ∈ Q the following equality holds

(1) (an−2
1 , (an−2

1 , x)−1)−1 = x; and

2◦ For all an−2
1 , x, y ∈ Q the following equivalence holds

(2) (an−2
1 , x)−1 = an−1 ⇔ x = (an−1

1 )−1.

The proof of the statement 1◦ :

By Th. 1.3 from Chapter III, for every sequence an−2
1 over Q and for

every x ∈ Q the following equalities hold

A((an−2
1 , x)−1, an−2

1 , x) = e(an−2
1 ) and

A((an−2
1 , x)−1, an−2

1 , (an−2
1 , (an−2

1 , x)−1)−1) = e(an−2
1 ).

Since (Q,A) is an n−quasigroup, we conclude that for every an−2
1 , x ∈ Q the

following equality holds

(an−2
1 , (an−2

1 , x)−1)−1 = x.

The proof of the statement 2◦ :

By 1◦, we conclude that for all an−2
1 , x, y ∈ Q the following sequence of

implications holds

(an−2
1 , x)−1 = (an−2

1 , y)−1 ⇒
(an−2

1 , (an−2
1 , x)−1)−1 = (an−2

1 , (an−2
1 , y)−1)−1 ⇒ x = y.

Hence, we conclude that also for all an−2
1 , x, y ∈ Q we have

(an−2
1 , x)−1 = (an−2

1 , y)−1 ⇔ x = y.

Finally, by 1◦ and 2◦, we have that for every sequence an−1
1 over Q and

for every x ∈ Q the following sequence of equivalences holds

(an−2
1 , x)−1 = an−1 ⇔

(an−2
1 , (an−2

1 , x)−1)−1 = (an−1
1 )−1 ⇔ x = (an−1

1 )−1,

and hence, we conclude that for every an−1
1 ∈ Q the following equivalence

holds
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(an−2
1 , x)−1 = an−1 ⇔ x = (an−1

1 )−1.

Remark: For n = 2, −1 ∈ Q!.

1.3. Proposition [Ušan 1994]: Let (Q,A) be an n−group, e its {1, n}−neutral

operation, −1 its inverse operation and n ≥ 2. Then for every an−2
1 , bn−2

1 , x, y ∈
Q the following equality holds

(a) A(x, bn−2
1 , y) = A(A(x, an−2

1 , (an−2
1 , e(bn−2

1 ))−1), an−2
1 , y).

Proof. 1) For n = 2 the equality (a) reduces to the equality:

A(x, y) = A(x, y).

2) Let n ≥ 3. Let also x, y, an−2
1 , bn−2

1 be arbitrary elements of the set Q.

Then, by the assumptions, we have the following equalities

A(z, an−2
1 , y) = A(z, an−2

1 , A(e(bn−2
1 ), bn−2

1 , y))
= A(A(z, an−2

1 , e(bn−2
1 )), bn−2

1 , y),

i.e. the equality

A(A(z, an−2
1 , e(bn−2

1 )), bn−2
1 , y) = A(z, an−2

1 , y).

Thereby, since for all x, y, an−2
1 , bn−2

1 ∈ Q the equivalence

A(z, an−2
1 , e(bn−2

1 )) = x ⇔ z = A(x, an−2
1 , (an−2

1 , e(bn−2
1 ))−1)

holds, we conclude that the equality (a) is satisfied. 2

1.4. Proposition [Ušan 1995/1]: Let (Q,A) be an n−group, e its {1, n}−ne-

utral operation and n ≥ 3. Then for every sequence an−2
1 over Q and for every

i ∈ {1, . . . , n− 2} there is exactly one xi ∈ Q such that the equality

e(ai−1
1 , xi, a

n−3
i ) = an−2

holds.

Proof. By Proposition 1.2 and Proposition 1.3, we conclude that for every

i ∈ {1, . . . , n− 2}, for every sequence an−2
1 over Q and for every xi ∈ Q, the

following sequence of equivalences holds

e(ai−1
1 , xi, a

n−3
i ) = an−2

1.2⇔
(an−2

1 , e(ai−1
1 , xi, a

n−3
i ))−1 = (an−2

1 , an−2)
−1 ⇔
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A(e(an−2
1 ), an−2

1 , (an−2
1 , e(ai−1

1 , xi, a
n−3
i ))−1) =

A(e(an−2
1 ), an−2

1 , (an−2
1 , an−2)

−1) ⇔
A(A(e(an−2

1 ), an−2
1 , (an−2

1 , e(ai−1
1 , xi, a

n−3
i ))−1), an−2

1 , e(an−2
1 )) =

A(A(e(an−2
1 ), an−2

1 , (an−2
1 , an−2)

−1), an−2
1 , e(an−2

1 )) ⇔1

A(e(an−2
1 ), ai−1

1 , xi, a
n−3
i , e(an−2

1 )) =

A(A(e(an−2
1 ), an−2

1 , (an−2
1 , an−2)

−1), an−2
1 , e(an−2

1 )) ⇔
A(e(an−2

1 ), ai−1
1 , xi, a

n−3
i , e(an−2

1 )) = (an−2
1 , an−2)

−1,

and hence we conclude that the equivalence

e(ai−1
1 , xi, a

n−3
i ) = an−2 ⇔

A(e(an−2
1 ), ai−1

1 , xi, a
n−3
i , e(an−2

1 )) = (an−2
1 , an−2)

−1

holds for every i ∈ {1, . . . , n − 2} and for every an−2
1 , xi ∈ Q. Hence, since

(Q, A) is an n−quasigroup, we conclude that the proposition is true. 2

2 Hosszú–Gluskin algebras

2.1. Definition [Ušan 1995/1]: We say that an algebra (Q, {·, ϕ, b}) [of the

type < 2, 1, 0 >] is a Hosszú–Gluskin algebra of order n (n ≥ 3) [briefly:

nHG−algebra] iff the following statements hold: (1) (Q, ·) is a group; (2)

ϕ ∈ Aut(Q, ·); (3) ϕ(b) = b; and (4) for every x ∈ Q, ϕn−1(x) · b = b · x.

See Example 1.4 from Chapter I.

2.2. Proposition: Let (Q, {·, ϕ, b}) be an nHG−algebra. Also, let

(5) A(xn
1 )

def
= x1 · ϕ(x2) · . . . · ϕn−1(xn) · b

for all xn
1 ∈ Q. Then (Q, A) is an n−group.

Proof. Firstly we prove the following statements:

1◦ (Q,A) is an n−quasigroup; and

2◦ (Q,A) is an < 1, 2 > −associative n−groupoid.

The proof of the statement 1◦ :

By (1),(2) and (5).

1Proposition 1.3: x = y = e(an−2
1 ) and bn−2

1 = ai−1
1 , xi, a

n−3
i .
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Sketch of the proof of 2◦ :

A(A(xn
1 ), x2n−1

n+1 ) =

(x1 · ϕ(x2) · . . . · ϕn−1(xn) · b) · ϕ(xn+1) · ϕ2(xn+2) · . . . · ϕn−1(x2n−1) · b =

x1 · (ϕ(x2) · . . . · ϕn−1(xn) · b · ϕ(xn+1)) · ϕ2(xn+2) · . . . · ϕn−1(x2n−1) · b =

x1 · (ϕ(x2) · . . . · ϕn−1(xn) · ϕ(b) · ϕ(xn+1)) · ϕ2(xn+2) · . . . · ϕn−1(x2n−1) · b =

x1 · ϕ(x2 · . . . · ϕn−2(xn) · b · xn+1) · ϕ2(xn+2) · . . . · ϕn−1(x2n−1) · b =

x1 · ϕ(x2 · . . . · ϕn−2(xn) · ϕn−1(xn+1) · b) · ϕ2(xn+2) · . . . · ϕn−1(x2n−1) · b =

A(x1, A(xn+1
2 ), x2n−1

n+2 ).

Finally, by 1◦, 2◦ and Proposition 2.3 from Chapter III, we conclude that

the proposition is satisfied. 2

2.3. Definition [Ušan 1995/1]: We say that an nHG−algebra (Q, {·, ϕ, b})
is associated (or corresponds) to the n−group (Q,A) iff the equality (5)

holds for all xn
1 ∈ Q.

3 A proof of the Hosszú – Gluskin Theorem

3.1. Theorem (Hosszú – Gluskin Theorem): Let (Q,A) be an n−group, e

its {1, n}−neutral operation and n ≥ 3. Let also cn−2
1 be an arbitrary sequence

over Q, and let

(a) x · ydef
= A(x, cn−2

1 , y),

(b) ϕ(x)
def
= A(e(cn−2

1 ), x, cn−2
1 ) and

(c) b
def
= A(

n

e(cn−2
1 )|)

for all x, y ∈ Q. Then, the following statements hold: (i) (Q, {·, ϕ, b}) is an

nHG−algebra; and (ii) for every xn
1 ∈ Q the equality

(d) A(xn
1 ) = x1 · ϕ(x2) · . . . · ϕn−1(xn) · b

holds.2

2[Ušan 1995/1]. The proof of the theorem follow the idea of E.I. Sokolov from
[Sokolov 1976]. In detail in Appendix 2.
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See, also Ch.I-2.1.

Proof.3 Firstly we prove that the stetements (1)-(4) from Def. 2.1 hold.

The proof of the statement (1): By (Q,A) is an n−group.

Sketch of the proof of (2):

ϕ(x · y)
(a),(b)
== A(e(cn−2

1 ), A(x, cn−2
1 , y), cn−2

1 )

= A(A(e(cn−2
1 ), x, cn−2

1 ), y, cn−2
1 )

(b)
=A(ϕ(x), y, cn−2

1 )
1.1
=A(ϕ(x), A(cn−2

1 , e(cn−2
1 ), y), cn−2

1 )

= A(ϕ(x), cn−2
1 , A(e(cn−2

1 ), y, cn−2
1 ))

(b)
=A(ϕ(x), cn−2

1 , ϕ(y))
(a)
=ϕ(x) · ϕ(y).

Sketch of the proof of (3):

ϕ(b)
(c)
=ϕ(A(

n

e(cn−2
1 )|)(b)

=A(e(cn−2
1 ), A(

n

e(cn−2
1 )|), cn−2

1 )

= A(A(
n

e(cn−2
1 )|), e(cn−2

1 ), cn−2
1 )

1.1
=A(

n

e(cn−2
1 )|)(c)

=b.

Sketch of the proof of (4):

b · x (a),(c)
== A(A(

n

e(cn−2
1 )|), cn−2

1 , x)

= A(
n−1

e(cn−2
1 )|, A(e(cn−2

1 ), cn−2
1 , x))

= A(
n−1

e(cn−2
1 )|, A(x, cn−2

1 , e(cn−2
1 )))

= A(
n−2

e(cn−2
1 )|, A(e(cn−2

1 ), x, cn−2
1 ), e(cn−2

1 ))

(b)
=A(

n−2

e(cn−2
1 )|, ϕ(x), e(cn−2

1 ))

= A(
n−2

e(cn−2
1 )|, A(ϕ(x), cn−2

1 , e(cn−2
1 )), e(cn−2

1 ))

= A(
n−3

e(cn−2
1 )|, A(e(cn−2

1 ), ϕ(x), cn−2
1 ),

2

e(cn−2
1 )|)

3[Ušan 1995/1].
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= A(
n−3

e(cn−2
1 )|, ϕ2(x),

2

e(cn−2
1 )|)

−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−
= A(ϕn−1(x),

n−1

e(cn−2
1 )|)

= A(A(ϕn−1(x), cn−2
1 , e(cn−2

1 )),
n−1

e(cn−2
1 )|)

= A(ϕn−1(x), cn−2
1 , A(

n

e(cn−2
1 )|)

(a),(c)
== ϕn−1(x) · b.
Finally, we prove that the statement (d) holds.

By definition (a)− (c), using the asumption that (Q,A) is an n−group, e

its {1, n}−neutral operation and n ≥ 3, and by Proposition 1.1 from Chapter

IV, we conclude that for every xn
1 ∈ Q the following sequence of equalities

holds:

A(xn
1 ) = A(xn−1

1 , A(cn−2
1 , e(cn−2

1 ), A(xn, c
n−2
1 , e(cn−2

1 )))) =

= A(xn−1
1 , A(cn−2

1 , A(e(cn−2
1 ), xn, c

n−2
1 ), e(cn−2

1 ))) =

= A(xn−1
1 , A(cn−2

1 , ϕ(xn), e(cn−2
1 ))) =

= A(xn−2
1 , A(xn−1, c

n−2
1 , ϕ(xn)), e(cn−2

1 )) =

= A(xn−2
1 , xn−1 · ϕ(xn), e(cn−2

1 )) =

= A(xn−2
1 , A(cn−2

1 , e(cn−2
1 ), A(xn−1 · ϕ(xn), cn−2

1 , e(cn−2
1 ))), e(cn−2

1 )) =

= A(xn−2
1 , A(cn−2

1 , A(e(cn−2
1 ), xn−1 · ϕ(xn), cn−2

1 ), e(cn−2
1 )), e(cn−2

1 )) =

= A(xn−2
1 , A(cn−2

1 , ϕ(xn−1 · ϕ(xn)), e(cn−2
1 )), e(cn−2

1 )) =

= A(xn−3
1 , A(xn−2, c

n−2
1 , ϕ(xn−1 · ϕ(xn))), e(cn−2

1 ), e(cn−2
1 )) =

= A(xn−3
1 , xn−2 · ϕ(xn−1 · ϕ(xn)), e(cn−2

1 ), e(cn−2
1 )) =

−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−
= A(x1 · ϕ(x2) · . . . · ϕn−1(xn),

n−1

e(cn−2
1 )|)

= A(A(x1 · ϕ(x2) · . . . · ϕn−1(xn), cn−2
1 , e(cn−2

1 )),
n−1

e(cn−2
1 )|)

= A(x1 · ϕ(x2) · . . . · ϕn−1(xn), cn−2
1 , A(

n

e(cn−2
1 )|))

= x1 · ϕ(x2) · . . . · ϕn−1(xn) · b. 2
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4 Two descriptions of all nHG−algebras cor-

responding to the same n−group

4.1. Theorem [Ušan 1995/1]: Let (Q,A) be an n−group, e its {1, n}−neu-

tral operation, and n ≥ 3. Further on, let cn−2
1 be an arbitrary sequence over

Q, and let for every x, y ∈ Q

B(cn−2
1 )(x, y)

def
= A(x, cn−2

1 , y),

ϕ(cn−2
1 )(x)

def
= A(e(cn−2

1 ), x, cn−2
1 ) and

b(cn−2
1 )

def
= A(

n

e(cn−2
1 )|).

Let also

CA
def
= {(Q, {B(cn−2

1 ), ϕ(cn−2
1 ), b(cn−2

1 )})|cn−2
1 ∈ Q}.

Then for every nHG−algebra (Q, {·, ϕ, b}) the following equivalence holds

(Q, {·, ϕ, b}) ∈ CA ⇔ (∀xi ∈ Q)n
1A(xn

1 ) = x1 · ϕ(x2) · . . . · ϕn−1(xn) · b.
Proof. 1) ⇒: By Theorem 3.1, we conclude that for every nHG−algebra

(Q, {·, ϕ, b}) the following implication holds:

(Q, {·, ϕ, b}) ∈ CA ⇒ (∀xi ∈ Q)n
1A(xn

1 ) = x1 · ϕ(x2) · . . . · ϕn−1(xn) · b.
2) ⇐:

21 Let (Q,A) be an n−group, n ≥ 3, (Q, {·, ϕ, b}) an nHG−algebra, e the

neutral element of the group (Q, ·) and −1 the inverse operation in (Q, ·). Let

also for every xn
1 ∈ Q the following equality holds:

A(xn
1 ) = x1 · ϕ(x2) · . . . · ϕn−1(xn) · b.

If in the above equality we put xn−2
2 =

n−3
e and xn−1 = b−1, since ϕ(b) = b and

thus also ϕ(b−1) = b−1, we conclude that for every x1, xn ∈ Q the following

equality holds:

A(x1,
n−3
e , b−1, xn) = x1 · xn,

and hence we conclude that for all x, y ∈ Q the equality

x · y = B
(
n−3
e ,b−1)

(x, y)

also holds.
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22 Let (Q, {·, ϕ, b}) and (Q, {·, ϕ, b}) be two nHG− algebras, e the neutral

element of the group (Q, ·). Let also for every an
1 ∈ Q the following equality

holds

x1 · ϕ(x2) · . . . · ϕn−2(xn−1) · b · xn = x1 · ϕ(x2) · . . . · ϕn−2(xn−1) · b · xn.

If in the above equality we put x1 = . . . = xn = e, we conclude that

b = b,

which means that for every xn
1 ∈ Q the following equality holds

x1 · ϕ(x2) · . . . · ϕn−2(xn−1) · b · xn = x1 · ϕ(x2) · . . . · ϕn−2(xn−1) · b · xn,

and hence, by similar argument, we conclude that

ϕ = ϕ.

23 By Theorem 3.1 − (i) and by that the arguments from 21) and 22), we

conclude that for every nHG−algebra (Q, {·, ϕ, b}) the following implication

holds

(∀xi ∈ Q)n
1A(xn

1 ) = x1 · ϕ(x2) · . . . · ϕn−1(xn) · b ⇒ (Q, {·, ϕ, b}) ∈ CA. 2

A consequence of Theorem 4.1 and Proposition 1.3 is the following propo-

sition:

4.2. Proposition [Ušan 1995/1]: Let (Q,A) be an n−group, e its {1, n}−ne-

utral operation, −1 its inverse operation and n ≥ 3. Let also (Q, {·, ϕ, b}) be

an arbitrary nHG−algebra corresponding to the n−group (Q,A), e the neu-

tral element of the group (Q, ·) and −1 the inverse operation in (Q, ·). Then

for every bn−2
1 ∈ Q the following equality holds:

e(bn−2
1 ) = (ϕ(b1) · . . . · ϕn−2(bn−2) · b)−1.

Proof. By Theorem 4.1, there is a sequence an−2
1 over Q such that for all

x, y ∈ Q the equality

(a) x · y = A(x, an−2
1 , y)

holds. The following also hold

(b) e = e(an−2
1 ),

and

(c) (∀a ∈ Q)a−1 = (an−2
1 , a)−1.

Let also bn−2
1 be an arbitrary sequence over Q. Then, by Proposition 1.3, for
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all x, y ∈ Q the following equality holds

A(x, bn−2
1 , y) = A(A(x, an−2

1 , (an−2
1 , e(bn−2

1 ))−1), an−2
1 , y),

i.e., by (a) and (c), also the equality

A(x, bn−2
1 , y) = x · (e(bn−2

1 ))−1 · y.

Hence, since (Q, {·, ϕ, b}) is an nHG−algebra corresponding to the n−group

(Q, A), we conclude that for all x, y ∈ Q the following holds

x · ϕ(b1) · . . . · ϕn−2(bn−2) · b · y = x · (e(bn−2
1 ))−1 · y.

Hence, we conclude that the proposition holds. 2

4.3. Theorem: [Ušan 1995/1]: Let (Q,A) be an n−group, n ≥ 3, (Q, {·, ϕ, b})
an arbitrary nHG−algebra corresponding to the n−group (Q,A),−1 the in-

verse operation in (Q, ·), k ∈ Q and for every x, y ∈ Q

(α) x ·k y
def
= x · k · y,

(β) ϕk(x)
def
= k−1 · ϕ(x) · ϕ(k) and

(γ) bk
def
= k−1 · ϕ(k−1) · . . . · ϕn−1(k−1) · b.

Let also

(δ) ĈA
def
= {(Q, {·k, ϕk, bk})|k ∈ Q}.

Then, ĈA is a set of all nHG−algebras corresponding to the n−group (Q,A),

i.e., then ĈA = CA.

Proof. 1) Let (Q, {·, ϕ, b}) be an arbitrary nHG−algebra corresponding to

the n−group (Q,A). By Theorem 4.1,

(Q, {·, ϕ, b}) ∈ CA,

i.e., there is a sequence an−2
1 over Q such that

x · y = A(x, an−2
1 , y),

ϕ(x) = A(e(an−2
1 ), x, an−2

1 ) and

b = A(
n

e(an−2
1 )|).

In addition, by (α)− (β), we conclude that · = ·e, ϕ = ϕe and b = be, where

e is the neutral element of the group (Q, ·), and hence also

(Q, {·, ϕ, b}) ∈ ĈA.

Thus,

(Q, {·, ϕ, b}) ∈ CA ∩ ĈA
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also holds.

2) Let also (Q, {¦, ϕ¦, b¦}) be an arbitrary nHG−algebra corresponding

to the n−group (Q, A). By Theorem 4.1,

(Q, {¦, ϕ¦, b¦}) ∈ CA,

i.e. there is a sequence bn−2
1 over Q such that

x ¦ y = A(x, bn−2
1 , y),

ϕ¦ = A(e(bn−2
1 ), x, bn−2

1 ) and

b¦ = A(
n

e(bn−2
1 )|).

By Proposition 1.3, for all x, y ∈ Q the equality

A(x, bn−2
1 , y) = A(A(x, an−2

1 , (an−2
1 , e(bn−2

1 ))−1), an−2
1 , y)

holds. Since an−2
1 , bn−2

1 are fixed elements of the set Q, there is k ∈ Q such

that

(an−2
1 , e(bn−2

1 ))−1 = k.

Hence, for all x, y ∈ Q, the equality

x ¦ y = x · k · y
holds. In addition

e(bn−2
1 ) = k−1;

for the inverse operation −1 in the group (Q, ·), namely, the following holds

a−1 = (an−2
1 , a)−1

for every a ∈ Q. Thereby, and by the assumption that (Q, {·, ϕ, b}) is an

nHG−algebra corresponding to the n−group (Q,A), by Proposition 4.2, we

conclude that for every x ∈ Q the following sequence of equalities holds
ϕ¦(x) = A(e(bn−2

1 ), x, bn−2
1 )

= e(bn−2
1 ) · ϕ(x) · ϕ2(b1) · . . . · ϕn−1(bn−2) · b

= e(bn−2
1 ) · ϕ(x) · ϕ2(b1) · . . . · ϕn−1(bn−2) · ϕ(b)

= e(bn−2
1 ) · ϕ(x) · ϕ(ϕ(b1) · . . . · ϕn−2(bn−2) · b)

= e(bn−2
1 ) · ϕ(x) · ϕ((e(bn−2

1 ))−1)
= k−1 · ϕ(x) · ϕ(k),

hence we conclude that for every x ∈ Q the equality

ϕ¦(x) = k−1 · ϕ(x) · ϕ(k)

holds. Similarly, we conclude that also the following sequence of equalities

holds
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b¦ = A(
n

e(bn−2
1 )|)

= e(bn−2
1 ) · ϕ(e(bn−2

1 )) · . . . · ϕn−1(e(bn−2
1 )) · b

= k−1 · ϕ(k−1) · . . . · ϕn−1(k−1) · b,
and hence we conclude

b¦ = k−1 · ϕ(k−1) · . . . · ϕn−1(k−1) · b.
Thus,

CA ⊆ ĈA.

holds.

3) Finally, let (Q, {¦, ϕ¦, b¦)}) be an arbitrary element from the set ĈA.

Then, by (α)− (δ), there is k ∈ Q such that for all x, y ∈ Q the equalities

x ¦ y = x · k · y,

ϕ¦(x) = k−1 · ϕ(x) · ϕ(k) and

b¦ = k−1 · ϕ(k−1) · . . . · ϕn−1(k−1) · b
hold. In addition, by Proposition 1.2 and Proposition 1.4, we conclude that

for every sequence bn−3
1 over Q and for every i ∈ {1, . . . , n − 2}, there is

exactly one xi ∈ Q such that

(an−2
1 , e(bi−1

1 , xi, b
n−3
i ))−1 = k.

Hence, firstly, by Proposition 1.3, we conclude that for all x, y ∈ Q the

following sequence of equalities holds

x ¦ y = x · k · y
= A(A(x, an−2

1 , (an−2
1 , e(bi−1

1 , xi, b
n−3
i ))−1), an−2

1 , y)
= A(x, bi−1

1 , xi, b
n−3
i , y),

i.e. that for all x, y ∈ Q also the equality

x ¦ y = A(x, bi−1
1 , xi, b

n−3
i , y)

holds. Further, by the similar argument as in 2), we conclude that for every

x ∈ Q the following sequence of equalities holds
ϕ¦(x) = k−1 · ϕ(x) · ϕ(k)

= e(bi−1
1 , xi, b

n−3
i ) · ϕ(x) · ϕ(e(bi−1

1 , xi, b
n−3
i ))−1)

4.2
=e(bi−1

1 , xi, b
n−3
i ) · ϕ(x) · ϕ(ϕ(b1) · . . . · ϕi(xi) · . . . · ϕn−2(bn−3) · b)
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= e(bi−1
1 , xi, b

n−3
i ) · ϕ(x) · ϕ2(b1) · . . . · ϕi+1(xi) · . . . · ϕn−1(bn−3) · ϕ(b)

= e(bi−1
1 , xi, b

n−3
i ) · ϕ(x) · ϕ2(b1) · . . . · ϕi+1(xi) · . . . · ϕn−1(bn−3) · b

= A(e(bi−1
1 , xi, b

n−3
i ), x, bi−1

i , xi, b
n−3
i ),

i.e. that for every x ∈ Q the equality

ϕ¦(x) = A(e(bi−1
1 , xi, b

n−3
i ), x, bi−1

1 , xi, b
n−3
i )

is satisfied. Finally, since k−1 = e(bi−1
1 , xi, b

n−3
i ) and by the assumption that

(Q, {·, ϕ, b}) is an nHG−algebra corresponding to the n−group (Q,A), we

conclude that
b¦ = k−1 · ϕ(k−1) · . . . · ϕn−1(k−1) · b

= e(bi−1
1 , xi, b

n−3
i ) · ϕ(bi−1

1 , xi, b
n−3
i ) · . . . · ϕn−1(e(bi−1

1 , xi, b
n−3
i )) · b

= A(
n

e(bi−1
1 , xi, b

n−3
i )|);

i.e. that

b¦ = A(
n

e(bi−1
1 , xi, b

n−3
i )|),

and hence

ĈA ⊆ CA

also holds. 2

4.4. Remark: One generalization of Hosszú-Gluskin Theorem is given in

[Dudek, Michalski 1982].



42 V n−groups with {i, j}−neutral operations for {i, j} 6= {1, n}

Chapter V

n−GROUPS WITH {i, j}−NEUTRAL

OPERATIONS FOR {i, j} 6= {1, n}

1 Main proposition

1.1. Theorem [Ušan 1995/2]: Let (Q,A) be an n−group, n ≥ 3, (i, j) ∈
{1, . . . , n}2, i < j and {i, j} 6= {1, n}. Let also (Q, {·, ϕ, b}) be an nHG−algebra

associated to the n−group (Q,A). Then, the following statements are equiv-

alent:

(i) (Q,A) has an {i, j}−neutral operation; and

(ii) (Q, ·) is a commutative group, ϕi−1 = I and ϕj−1 = I, where I is

the identity permutation of the set Q.

Proof. 1) One convention: Let (Q, ·) be a group (semigroup) with the

neutral element e. In the proof we use the following convention:

(1)
q∏

t=p
ct stands for





cp · . . . · cq , p < q
cp , p = q
e , cq

p = ∅.
1

For example
n∏

t=n+1
ϕt−1(bt−2) = e (: ϕt−1(bt−2)|nt=n+1 = ∅).

2) (i) ⇒ (ii) : Let (Q,A) be an n−group, n ≥ 3 and let (Q, {·, ϕ, b}) be

an arbitrary nHG−algebra associated to the n−group (Q,A). Also let e the

neutral element of the group (Q, ·) and −1 the inverse operation in (Q, ·).
Further on, let E be an {i, j}−neutral operation of (Q,A) such that the

1The case p ≤ q is based on the following convention:
n+1∏
t=1

ct
def
= (

n∏
t=1

ct) · cn+1 and
m∏

t=m
ct

def
= cm.
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condition

(2) {i, j} 6= {1, n}
holds. Then, using Th. 3.1 from Chapter IV and convention (1),we conclude

that for every x, bn−2
1 ∈ Q the following equalities hold:

(3) (
i−1∏
t=1

ϕt−1(bt)) ·ϕi−1(E(bn−2
1 )) · (

j−2∏
t=i

ϕt(bt)) ·ϕj−1(x) · ( n∏
t=j+1

ϕt−1(bt−2)) ·b = x

and

(4) (
i−1∏
t=1

ϕt−1(bt)) ·ϕi−1(x) ·(
j−2∏
t=i

ϕt(bt)) ·ϕj−1(E(bn−2
1 )) ·( n∏

t=j+1
ϕt−1(bt−2)) ·b = x,

hence, we have that for every x, bn−2
1 ∈ Q the following equality holds

(5) ϕi−1(E(bn−2
1 )) · (

j−2∏
t=i

ϕt(bt)) ·ϕj−1(x) = ϕi−1(x) · (
j−2∏
t=i

ϕt(bt)) ·ϕj−1(E(bn−2
1 )).

Substituing x by e, we deduce from (3) that for every sequence bn−2
1 over

Q the following equality holds

(6) ϕi−1(E(bn−2
1 )) = (

i−1∏
t=1

ϕt−1(bt))
−1 · b−1 · ( n∏

t=j+1
ϕt−1(bt−2))

−1 · (
j−2∏
t=i

ϕt(bt))
−1,

hence, since (Q, ·) is a group and ϕ and −1 are permutations of the set Q, we

conclude that the following holds:

1◦ E is a permutation of the set Q for n = 3, and (Q, E) is an (n −
2)−quasigroup for n ≥ 4.

The consequence of the condition (2) is the following:

2◦ If ϕt(bt)|j−2
t=i is not empty sequence, then at least one of the variables

b1 and bn−2 is not the variable in the term
j−2∏
t=i

ϕt(bt).

Since ϕ(b−1) = b−1 [:Def. 2.1 from Chapter IV and b · b−1 = e], if we put

in (6) b1 = . . . = bn−2 = e, we conclude that the following statement holds:

3◦ E(
n−2
e ) = b−1.

By 3◦, putting in (4) b1 = . . . = bn−2 = e, we conclude that the following

statement holds:

4◦ ϕi−1 = I.

By 3◦, putting in (3) b1 = . . . = bn−2 = e, and by Def. 2.1 from Chapter
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IV, we conclude that the following statement holds

4◦1 ϕj−1 = ϕn−1.

Sketch of the proof of 4◦1 :

ϕi−1(b−1) · ϕj−1(x) · b = x ⇒ b−1 · ϕj−1(x) · b = x ⇒
ϕj−1(x) · b = b · x ⇒ ϕj−1(x) · b = ϕn−1(x) · b ⇒
ϕj−1(x) = ϕn−1(x).

By 1◦, 2◦, 4◦, 4◦1, by statement connected with (5) and by Def. 2.1 from

Chapter IV, we conclude that also the following statement holds:

5◦ (Q, ·) is a commutative group.

Sketch of the proof of 5◦ :

Let E(b1,
n−3
e ) = y (if bi 6= b1) or E(

n−3
e , bn−2) = y (if bj−2 6= bn−2) [:1◦, 2◦].

Then:

ϕi−1(y) · ϕj−1(x) = ϕi−1(x) · ϕj−1(y)
4◦⇒y · ϕj−1(x) = x · ϕj−1(y)

4◦1⇒
y · ϕn−1(x) = x · ϕn−1(y) ⇒ y · ϕn−1(x) · b = x · ϕn−1(y) · b ⇒
y · b · x = x · b · y ⇒ (by) · (bx) = (bx) · (by).

In addition, by 5◦, 3◦, putting in (3) b1 = . . . = bn−2 = e, we conclude

6◦ ϕj−1 = I.

By 4◦, 5◦, and 6◦, we finally conclude that the implication (i) ⇒ (ii)

holds.

3) (ii) ⇒ (i) : Let (Q,A) be an n−group, n ≥ 3, let (Q, {·, ϕ, b}) be

an arbitrary nHG−algebra associated to the n−group (Q,A), and let the

statement (ii) holds. Let also, for every bn−2
1 ∈ Q

E(bn−2
1 )

def
= (

i−1∏
t=1

ϕt−1(bt))
−1 · b−1 · ( n∏

t=j+1
ϕt−1(bt−2))

−1 · (
j−2∏
t=i

ϕt(bt))
−1.

Then, for every x, bn−2
1 ∈ Q, the following two sequences of equalities hold:

A(bi−1
1 , E(bn−2

1 ), bj−2
i , x, bn−2

j−1 ) =

(
i−1∏
t=1

ϕt−1(bt)) · E(bn−2
1 ) · (

j−2∏
t=i

ϕt(bt)) · x · (
n∏

t=j+1
ϕt−1(bt−2)) · b = x, and

A(bi−1
1 , x, bj−2

i , E(bn−2
1 ), bn−2

j−1 ) =
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(
i−1∏
t=1

ϕt−1(bt)) · x · (
j−2∏
t=i

ϕt(bt)) · E(bn−2
1 ) · ( n∏

t=j+1
ϕt−1(bt−2)) · b = x.

Hence, the implication (ii) ⇒ (i) also holds. 2

1.2. Remark: If (Q, ·) is a noncommutative group and A(xn
1 ) = x1 · . . . ·

xn, n ≥ 3, then (Q,A) is an n−group without {i, j}−neutral operations with

condition {i, j} 6= {1, n} (:Theorem 1.1; ¬(i) ⇔ ¬(ii)). Besides, for example,

if (Q, ·) is a commutative group in which not every a ∈ Q is selfinverse, −1

is the inverse operation in (Q, ·) and A(x3
1)

def
= x1 · x−1

2 · x3, then (Q,A) is a

3-group without {i, j}−neutral operations with the condition {i, j} 6= {1, n}
(:Theorem 1.1; ϕ =−1).

2 Two propositions more

2.1. Theorem [Ušan 1995/2]: Let n ≥ 3, (Q,A) be an n−group, and e

its {1, n}−neutral operation [Th. 2.6 from Chapter II]. Then the following

statements are equaivalent:

(i) (Q,A) is a commutative n−group;

(ii) e is an {i, j}−neutral operation of the n−group (Q,A) for every

(i, j) ∈ {(p, q)|(p, q) ∈ {1, . . . , n}2 ∧ p < q};
(iii) (Q,A) has an {1, n− 1}−neutral operation; and

(iv) (Q,A) has a {2, n}−neutral operation.

Proof. 1) (i) ⇒ (ii) : (Q,A) is commutative iff for every permutation α of

the set {1, . . . , n} and for every xn
1 ∈ Q the following equality holds

A(xα(1), . . . , xα(n)) = A(xn
1 ).

Hence, by Th. 2.6 from Chapter II, we conclude that the implication (i) ⇒
(ii) holds.

2) (ii) ⇒ (iii) : By (ii), e is also an {1, n − 1}−neutral operation of the

n−group (Q,A).

3) (iii) ⇒ (iv) : Let (Q, {·, ϕ, b}) be an nHG−algebra associated to the

n−group (Q,A). Hence, by Th. 1.1 and by the condition (iii), we conclude
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that:

a) (Q, ·) is a commutative group; and

b) ϕn−2 = I.

Further, by a) and by Def. 2.1-(4) from Chapter IV, we conclude that the

following equality holds:

c) ϕn−1 = I.

From b) and c) it follows that:

d) ϕ = I.

Finally, by a), c) and d), and by Th. 1.1, we conclude that (Q,A) has a

{2, n}−neutral operation.

4) (iv) ⇒ (i) : Let (Q, {·, ϕ, b}) be an nHG−algebra associated to the

n−group (Q,A). Thereby, and also by Th. 1.1 and condition (iv), we con-

clude that (Q, ·) is a commutative group and that ϕ = I, hence, by 2.3 from

Chapter IV, we finally conclude that (Q,A) is a commutative n−group. 2

A consequence of Th. 1.1 and of Th. 2.1 is the following proposition:

2.2. Corollary [Ušan 1995/2]: Let (Q,A) be an n−group and n ∈ {3, 4}.
Then the following stetements are equaivalent:

(a) (Q, A) has an {i, j}−neutral operation with the condition {i, j} 6=
{1, n}; and

(b) (Q,A) is a commutative n−group. 2

3 Example

Let (Q, ·) be a commutative group in which not every a ∈ Q is selfinverse, e

its neutral element and −1 its the inverse operation. Let also

A(x5
1)

def
= x1 · x−1

2 · x3 · x−1
4 · x5.

Then:

a) (Q,A) is a 5-group (Prop. 2.2 from IV; ϕ =−1, b = e);
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b) for

e(a3
1)

def
= a1 · a−1

2 · a3,

e is an {1, 5}−neutral operation of the 5-group (Q,A);

c) for

E1(a
3
1)

def
= a−1

1 · a2 · a3,

E1 is a {3, 5}−neutral operation of the 5-group (Q,A); and

d) for

E2(a
3
1)

def
= a1 · a2 · a−1

3 ,

E2 is a {1, 3}−neutral operation of the 5-group (Q,A). 2
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Chapter VI

CONGRUENCES

1 On congruences in an m−groupoid

Let (Q,A) be an m−groupoid and m ≥ 1. Let also θ be an equivalence

relation in the set Q. Then θ is a congruence relation on the m−groupoid

(Q, A) iff for each am
1 , bm

1 ∈ Q the following formula holds

(a)
m∧

i=1
ai θ bi ⇒ A(am

1 ) θ A(bm
1 ).

The following proposition is true: θ is a congruence on an m−grou-

poid (Q,A) iff for each a, b, cm−1
1 ∈ Q the following formula holds

(b)
m∧

i=1
(a θ b ⇒ A(ci−1

1 , a, cm−1
i ) θ A(ci−1

1 , b, cm−1
i )).

A congruence relation θ on an m−groupoid (Q,A) is said to be

normal iff for each a, b, cm−1
1 ∈ Q the following formula holds

(c)
m∧

i=1
(A(ci−1

1 , a, cm−1
i ) θ A(ci−1

1 , b, cm−1
i ) ⇒ a θ b).

Thus, an equivalence relation θ in a set Q is a normal congruence

relation on an m−groupoid (Q,A) iff for each a, b, cm−1
1 ∈ Q the following

formula holds

(d)
m∧

i=1
(a θ b ⇔ A(ci−1

1 , a, cm−1
i ) θ A(ci−1

1 , b, cm−1
i )).1

2 On congruences on n−groups

2.1. Theorem [Ušan 1997/1]: Let (Q,A) be an n−group, e its {1, n}−ne-

utral operation, −1 its inverse operation and n ≥ 3. Let also θ be an equiv-

1For m = 2, for example, in [Belousov 1967].
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alence relation in the set Q such that for each a, b, cn−1
1 ∈ Q the following

formula holds

(0)
n∧

i=1
(a θ b ⇒ A(ci−1

1 , a, cn−1
i ) θ A(ci−1

1 , b, cn−1
i )).2

Then, for each a, b, cn−1
1 ∈ Q the following stetemnts hold:

(1)
n∧

i=1
(a θ b ⇔ A(ci−1

1 , a, cn−1
i ) θ A(ci−1

1 , b, cn−1
i ));

(2) a θ b ⇔ (cn−2
1 , a)−1 θ (cn−2

1 , b)−1;

(3)
n−2∧
i=1

(a θ b ⇔ e(ci−1
1 , a, cn−3

i ) θ e(ci−1
1 , b, cn−3

i )); and

(4)
n−1∧
i=1

(a θ b ⇒ (ci−1
1 , a, cn−2

i )−1 θ (ci−1
1 , b, cn−2

i )−1).

Proof. 1) For each a, b, cn−1
1 ∈ Q the following statement holds:

(0’)
n∧

i=1
(A(ci−1

1 , a, cn−1
i ) θ A(ci−1

1 , b, cn−1
i ) ⇒ a θ b).

The proof of (0’):

We shall consider, respectively, the cases: i = 1, i = n and i ∈ {1, . . . , n}\
{1, n}.
i = 1 : By the assumption (0) and by Th. 1.3 from Chapter III, we have the

following sequence of implications

A(a, cn−1
1 ) θ A(b, cn−1

1 ) ⇒
A(A(a, cn−1

1 ), cn−2
1 , (cn−1

1 )−1) θ A(A(b, cn−1
1 ), cn−2

1 , (cn−1
1 )−1) ⇒ a θ b,

hence

A(a, cn−1
1 ) θ A(b, cn−1

1 ) ⇒ a θ b.

i = n : By the assumption (0) and by Th. 1.3 from Chapter III, we have the

following implications:

A(cn−1
1 , a) θ A(cn−1

1 , b) ⇒
A((cn−1

2 , c1)
−1, cn−1

2 , A(cn−1
1 , a)) θ A((cn−1

2 , c1)
−1, cn−1

2 , A(cn−1
1 , b)) ⇒ a θ b,

and thereby

A(cn−1
1 , a) θ A(cn−1

1 , b) ⇒ a θ b.

i ∈ {1, . . . , n}\{1, n} : By the assumption (0), and since (Q,A) is an n−se-

migroup, and also by (0’) for i = 1 and i = n, we have the implications:

2See (b) in 1.
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A(ci−1
1 , a, cn−1

i ) θ A(ci−1
1 , b, cn−1

i ) ⇒
A(dn−1

i , A(ci−1
1 , a, cn−1

i ), di−1
1 ) θ A(dn−1

i , A(ci−1
1 , b, cn−1

i ), di−1
1 ) ⇒

A(A(dn−1
i , ci−1

1 , a), cn−1
i , di−1

1 ) θ A(A(dn−1
i , ci−1

1 , b), cn−1
i , di−1

1 ) ⇒
A(dn−1

i , ci−1
1 , a) θ A(dn−1

i , ci−1
1 , b) ⇒ a θ b,

and hence

A(ci−1
1 , a, cn−1

i ) θ A(ci−1
1 , b, cn−1

i ) ⇒ a θ b.

Since the conjuction of (0) and (0’) is equivalent with (1), we conclude

that (1) holds.

2) By (just proved) statement (1), by Th. 1.3 from Chapter III, the

following sequence of equivalences holds:

(cn−2
1 , a)−1 θ (cn−2

1 , b)−1 ⇔
A(a, cn−2

1 , (cn−2
1 , a)−1) θ A(a, cn−2

1 , (cn−2
1 , b)−1) ⇔

A(A(a, cn−2
1 , (cn−2

1 , a)−1), cn−2
1 , b) θ A(A(a, cn−2

1 , (cn−2
1 , b)−1), cn−2

1 , b) ⇔
A(A(a, cn−2

1 , (cn−2
1 , a)−1), cn−2

1 , b) θ A(a, cn−2
1 , A((cn−2

1 , b)−1, cn−2
1 , b)) ⇔

A(e(cn−2
1 ), cn−2

1 , b) θ A(a, cn−2
1 , e(cn−2

1 )) ⇔ b θ a

for all a, b cn−2
1 ∈ Q, and hence (2) holds.

3) By (1), by Proposition 1.3 from Chapter IV, and by (2), we have the

following sequence of equivalences holds:
a θ b ⇔ A(x, ci−1

1 , a, cn−3
i , y) θ A(x, ci−1

1 , b, cn−3
i , y)

⇔ A(A(x, an−2
1 , (an−2

1 , e(ci−1
1 , a, cn−3

i ))−1), an−2
1 , y) θ

A(A(x, an−2
1 , (an−2

1 , e(ci−1
1 , b, cn−3

i ))−1), an−2
1 , y)

⇔ A(x, an−2
1 , (an−2

1 , e(ci−1
1 , a, cn−3

i ))−1) θ
A(x, an−2

1 , (an−2
1 , e(ci−1

1 , b, cn−3
i ))−1)

⇔ (an−2
1 , e(ci−1

1 , a, cn−3
i ))−1 θ (an−2

1 , e(ci−1
1 , b, cn−3

i ))−1

⇔ e(ci−1
1 , a, cn−3

i ) θ e(ci−1
1 , b, cn−3

i ),
and hence, (3) holds.

4) By (0), by (3) and since

(an−2
1 , a)−1def

= E(an−2
1 , a, an−2

1 ),

where E is a {1, 2n − 1}−neutral operation of the (2n − 1)−group (Q,
2

A)

[:Th. 1.3, Prop. 1.1 and Prop. 1.2 from Chapter III ], we have the following

implications
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a θ b ⇒ E(ci−1
1 , a, cn−3

i , c, ci−1
1 , a, cn−3

i ) θ
E(ci−1

1 , b, cn−3
i , c, ci−1

1 , a, cn−3
i ) and

a θ b ⇒ E(ci−1
1 , b, cn−3

i , c, ci−1
1 , a, cn−3

i ) θ
E(ci−1

1 , b, cn−3
i , c, ci−1

1 , b, cn−3
i )

for all all a, b, c, cn−3
1 ∈ Q, and hence we have the implication

a θ b ⇒ E(ci−1
1 , a, cn−3

i , c, ci−1
1 , a, cn−3

i ) θ

E(ci−1
1 , b, cn−3

i , c, ci−1
1 , b, cn−3

i ) 3,

i.e.,

a θ b ⇒ (ci−1
1 , a, cn−3

i , c)−1 θ (ci−1
1 , b, cn−3

i , c)−1

for every i ∈ {1, . . . , n − 2} and for every sequence a, b, c, cn−3
1 over a set Q,

i.e. (4) holds. 2

2.2 Remark: Theorem 2.1 is proved under the assumption that n ≥ 3.

However, analizing the proof, one could easily see that (1) and (2) hold also

for n = 2.

3 On the set of all congruences of the given

n−group, n ≥ 3

3.1. Theorem [Ušan 1998/2]: Let (Q,A) be an n−group, n ≥ 3 and let

(Q, {·, ϕ, b}) be an arbitrary nHG−algebra associated to the n−group (Q,A).

Then, the following equality holds:

Con(Q,A) = Con(Q, ·) ∩ (Q,ϕ).

Proof. 1) ⇒: Let e be an {1, n}−neutral operation of an n−group (Q,A)

[cf. Th. 2.6 from Chapter II], and let cn−2
1 be an arbitrary sequence over the

set Q. Further on, let for every x, y ∈ Q the following hold

(1) x · ydef
= A(x, cn−2

1 , y),

(2) ϕ(x)
def
= A(e(cn−2

1 ), x, cn−2
1 ) and

(3) b
def
= (

n

e(cn−2
1 )|).

3((p ⇒ q) ∧ (p ⇒ r)) ⇔ (p ⇒ q ∧ r).
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Then (Q, {·, ϕ, b}) is an nHG−algebra associated to the n−group (Q,A) [cf.

2.3, 3.1 and 4.1 from Chapter IV]. In addition, for every (Q, {·, ϕ, b}) ∈ CA

[cf. Th. 4.1 from Chapter IV] there is a sequence cn−2
1 over Q such that for

all x, y ∈ Q, (1)-(3). Further on, if θ ∈ Con(Q,A), since (1) and (2) hold for

all x, y ∈ Q, we conclude that for all x, y, x, y ∈ Q the following sequence of

implications holds

x θ x ⇒ A(x, cn−2
1 , y) θ A(x, cn−2

1 , y)
x · y θ x · y

y θ y ⇒ A(x, cn−2
1 , y) θ A(x, cn−2

1 , y)
x · y θ x · y and

x θ x ⇒ A(e(cn−2
1 ), x, cn−2

1 ) θ A(e(cn−2
1 ), x, cn−2

1 )
⇒ ϕ(x) θ ϕ(x),

whence we conclude that for an arbitrary (Q, {·, ϕ, b}) ∈ CA and for arbitrary

θ ∈ P (Q2), the following implication holds

θ ∈ Con(Q,A) ⇒ θ ∈ Con(Q, ·) ∧ θ ∈ Con(Q,ϕ).

2) ⇐: Let (Q, {·, ϕ, b}) be an arbitrary nHG−algebra associated to the

n−group (Q,A). Further on, let θ be an arbitrary element of the set P (Q2)

such that the following conjunction holds

θ ∈ Con(Q, ·) ∧ θ ∈ Con(Q, ϕ).

Since θ ∈ Con(Q, ·), the following statement holds:

(a) for every i ∈ {1, . . . , m}, m ≥ 2, for every sequence am
1 over the set

Q and for all x, x ∈ Q the following implication holds

xθx ⇒ (
i−1∏
j=1

aj) · x · (
m−1∏
j=i

aj) θ (
i−1∏
j=1

aj) · x · (
m−1∏
j=i

aj)
4.

Since θ ∈ Con(Q,ϕ), the following statement holds:

(b) for every t ∈ N ∪0 and for all x, x ∈ Q the following implication holds

4
p−1∏
j=p

aj
def
= e, where e is the neutral element of the group (Q, ·), and p ∈ N. See, also

Chapter V-1.
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xθx ⇒ ϕt(x) θ ϕt(x).

Finally, by (a), (b) and by the assumption that (Q, {·, ϕ, b}) is an nHG−algebra

associated to the n−group (Q,A), we conclude that for every i ∈ {1, . . . , n},
for every xn

1 ∈ Q and for every xn
1 ∈ Q the following series of implications

holds
xiθ xi ⇒ ϕi−1(xi) θ ϕi−1(xi)

⇒ (
i−1∏
j=1

ϕj−1(xj)) · ϕi−1(xi) · (
n∏

j=i+1
ϕj−1(xj)) · b θ

(
i−1∏
j=1

ϕj−1(xj)) · ϕi−1(xi) · (
n∏

j=i+1
ϕj−1(xj)) · b

⇒ A(xi−1
1 , xi, x

n
i+1) θ A(xi−1

1 , xi, x
n
i+1). 2

3.2. Proposition: Let (Q,A) be an n−group, n ≥ 3, and let (Q, {·, ϕ, b}) be

an arbitrary nHG−algebra associated to the n−group (Q, A). Also let θ be an

arbitrary element of the set Con(Q, A). Then for all x, y ∈ Q the following

equaivalence holds

x θ y ⇔ ϕ(x) θ ϕ(y).

Proof. By Th. 2.1, by Th. 3.1 and by Th. 4.1 from Chapter IV, we conclude

that for all x, y ∈ Q the following sequence of equivalences holds

x θ y
2.1⇔ A(e(cn−2

1 ), x, cn−2
1 ) θ A(e(cn−2

1 ), y, cn−2
1 )

⇔ ϕ(x) θ ϕ(y).

2

4 Construction of a lattice on a given nHG−
algebra

In the Theory of groups the following three propositions are well known.

4.1. Proposition: Let (Q, ·) be a group, and let

L
def
= {H|(H, ·) ¢ (Q, ·)}.

Also let
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H1 ¯H2
def
= {x|x = h1 · h2 ∧ h1 ∈ H1 ∧ h2 ∈ H2} and

H1 ∩H2
def
= {x|x ∈ H1 ∧ x ∈ H2}.

Then (L,¯,∩) is a modular lattice.

4.2. Proposition: Let (Q, ·) be a group and let −1 be its inverse operation.

Further on, let

L
def
= {H|(H, ·) ¢ (Q, ·)}.

Then, there is exactly one bijection F of the set Con(Q, ·) onto the set L

such that for every θ ∈ Con(Q, ·) and for all x, y ∈ Q the following statement

holds

x θ y ⇔ x · y−1 ∈ F (θ).

4.3. Proposition: Let (Q, ·) be a group, let (L,¯,∩) be a modular lattice

from Prop. 4.1, and let F be a bijection of the set Con(Q, ·) onto the set L

from Prop. 4.2. Then, F is an isomorphism of the (Con(Q, ·), ◦,∩) to the

lattice (L,¯,∩), where

θ1 ◦ θ2
def
= {(x, y)|(∃z ∈ Q)((x, z) ∈ θ1 ∧ (z, y) ∈ θ2)} and

θ1 ∩ θ2
def
= {(x, y)|(x, y) ∈ θ1 ∧ (x, y) ∈ θ2.}

4.4. Theorem: [Ušan 1998/2]: Let (Q, {·, ϕ, b}) be an nHG−algebra (n ≥
3) and let −1 be an inverse operation in the group (Q, ·). Further on, let

(H, ·) ¢ (Q, ·) and let for every x, y ∈ Q the following equivalence holds

(0) x θ y ⇔ x · y−1 ∈ H [θ ∈ Con(Q, ·)].
Then the following statements are equivalent:

(1) ϕ(H)5 = H,

(2) θ ∈ Con(Q,ϕ) and

(3) ϕ ∈ H!.

Sketch of the proof.

1) (1) ⇒ (2) :

5ϕ(H)
def
= {ϕ(x)|x ∈ H}.
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x θ y
(0)⇔ x · y−1 ∈ H ⇔ ϕ(x · y−1) ∈ ϕ(H)
(1)⇔ ϕ(x · y−1) ∈ H ⇔ ϕ(x) · ϕ(y−1) ∈ H

⇔ ϕ(x) · (ϕ(y))−1 ∈ H
(0)⇔ϕ(x) θ ϕ(y).

2) (2) ⇒ (3) :

x · y−1 ∈ H
(0)⇔x θ y

(2)⇔ϕ(x) θ ϕ(y) 6

(0)⇔ϕ(x) · (ϕ(y))−1 ∈ H,

whence, we obtain

x ∈ H ⇔ ϕ(x) ∈ H.

Hence, by ϕ ∈ Q!, we conclude that the (3) holds.

3) (3) ⇒ (1) :

By

x ∈ H ⇔ ϕ(x) ∈ H

and by

x ∈ H ⇔ ϕ(x) ∈ ϕ(H),7

we conclude that the following equivalence holds

ϕ(x) ∈ H ⇔ ϕ(x) ∈ ϕ(H)

for all x ∈ Q, i.e.

y ∈ H ⇔ y ∈ ϕ(H)

for all y ∈ Q [ϕ ∈ Q!], whence we conclude that (1) holds. 2

4.5. Theorem [Ušan 1998/2]: Let (Q, {·, ϕ, b}) be an nHG−algebra. Fur-

ther on, let

L̂
def
= {H|(H, ·) ¢ (Q, ·) ∧ ϕ(H) = H}.

Also let

H1 ¯H2
def
= {x|x = h1 · h2 ∧ h1 ∈ H1 ∧ h2 ∈ H2} and

H1 ∩H2
def
= {x|x ∈ H1 ∧ x ∈ H2}.

Then (L̂,¯,∩) is a sublatittice of the modular lattice (L,¯,∩) [from Prop.

4.1].

Proof. The following statements hold:

6See 3.2 and 3.1.
7See, the footnote 5.
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1◦ For every H1, H2 ∈ L̂ the following equality holds

ϕ(H1 ¯H2) = H1 ¯H2; and

2◦ For every H1, H2 ∈ L̂ the following equality holds

ϕ(H1 ∩H2) = H1 ∩H2.

Sketch of the proof of 1◦ :
ϕ(H1 ¯H2) = ϕ{h1 · h2|h1 ∈ H1 ∧ h2 ∈ H2}

= {ϕ(h1 · h2)|h1 ∈ H1 ∧ h2 ∈ H2}
= {ϕ(h1) · ϕ(h2)|h1 ∈ H1 ∧ h2 ∈ H2}
= {ϕ(h1) · ϕ(h2)|ϕ(h1) ∈ ϕ(H1) ∧ ϕ(h2) ∈ ϕ(H2)}
= {ϕ(h1) · ϕ(h2)|ϕ(h1) ∈ H1 ∧ ϕ(h2) ∈ H2}
= {k1 · k2|k1 ∈ H1 ∧ k2 ∈ H2}
= H1 ¯H2.

Sketch of the proof of 2◦ :
ϕ(x) ∈ ϕ(H1 ∩H2) ⇔ x ∈ H1 ∩H2

⇔ x ∈ H1 ∧ x ∈ H2

⇔ ϕ(x) ∈ ϕ(H1) ∧ ϕ(x) ∈ ϕ(H2)
⇔ ϕ(x) ∈ H1 ∧ ϕ(x) ∈ H2

⇔ ϕ(x) ∈ H1 ∩H2. 2

4.6. Example: Let ({1, 2, 3, 4}, ·) be the
Klein group: Tab. 1. Further on, let ϕ be
the permutation of the set {1, 2, 3, 4} defined
in the following way

ϕ
def
=

(
1 2 3 4
1 2 4 3

)
. · 1 2 3 4

1 1 2 3 4
2 2 1 4 3
3 3 4 1 2
4 4 3 2 1

Tab. 1
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Then ({1, 2, 3, 4}, {·, ϕ, 2}) is a 3HG−algebra8. In addition, the following

holds:

L = {{1}, {1, 2}, {1, 3}, {1, 4}, {1, 2, 3, 4}} and L̂ = {{1}, {1, 2}, {1, 2, 3, 4}};
ϕ({1, 3}) = {1, 4} 6= {1, 3}, ϕ({1, 4}) = {1, 3} 6= {1, 4}.

Lattices (L,¯,∩) and (L̂,¯,∩) are represented in Diag. 1 and Diag. 2.

¡
¡

¡
¡

¡
¡

@
@

@
@

@
@

@
@

@
@

@
@

¡
¡

¡
¡

¡
¡

{1}

{1, 2, 3, 4}

{1, 3} {1, 2} {1, 4}

Diag. 1

{1}

{1, 2, 3, 4}

{1, 2}

Diag. 2

4.7. Remark: If (Q, {·, ϕ, b}) is an nHG−algebra and ϕ an inner auto-

morphism of the group (Q, ·), then (L̂,¯,∩) = (L,¯,∩). However, there are

nHG−algebras (Q, {·, ϕ, b}) such that ϕ is not an inner automorphism of

the group (Q, ·) and (L̂,¯,∩) = (L,¯,∩). E.g.: Let (Q, ·) be a commutative

group, −1 an inverse operation in (Q, ·) and let there be at least one x ∈ Q

such that x−1 6= x. Further on, let ϕ =−1, b = e, where e is the neutral

element of the group (Q, ·). Then (Q, {·, ϕ, b}) is a 3HG−algebra and L̂ = L.

By Th. 3.1 and by 4.1-4.5, we conclude that the following proposition

holds:

8See, also Example 1.4 from Chapter I.
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4.8. Proposition: Let (Q,A) be an n−group, n ≥ 3 and (Q, {·, ϕ, b}) its

arbitrary associated nHG−algebra. Further on, let

F̂ = F for each θ ∈ Con(Q, ·) ∩ Con(Q, ϕ),

where F from Prop. 4.2. Then, F̂ is an isomorphism of the (Con(Q,A), ◦,∩)

to the lattice (L̂,¯,∩).

4.9. Remark: For every n−group (Q,A), n ≥ 3, there is a group (Q, ·)
and its normal subgroup (H, ·) such that: 1) Q ∈ Q/H; 2) the factor–group

(Q/H, 2) [of the group (Q, ·) over H] is a finite cyclic group; and 3) for every

xn
1 ∈ Q, A(xn

1 ) = x1 · . . . ·xn [:Post’s Coset theorem, 1940]. In [Monk, Sioson

1971] it was described the lattice of congruences of the n−group (Q,A), n ≥
3, up to an isomorphism, by means of the lattice of normal subgroups of the

group (H, ·) which are at the same time normal subgroup of the group (Q, ·).
See, also [Janeva 1995].

5 About congruence classes of n−groups

5.1. Example: Let ({1, 2, 3, 4}, ·) be Klein’s
group: Table 1. Then, ({1, 2, 3, 4}, A), where

A(x3
1)

def
= x1 · x2 · x3 · 3

for every x3
1 ∈ {1, 2, 3, 4}, is a 3-group;

· 1 2 3 4
1 1 2 3 4
2 2 1 4 3
3 3 4 1 2
4 4 3 2 1

Table 1.

Tables 21−24, Ai(x, y)
def
= A(x, i, y), i ∈ {1, 2, 3, 4} [A1(x, y) = x·y·3, A2(x, y) =

x · y · 4, A3(x, y) = x · y, A4(x, y) = x · y · 2].

A1 1 2 3 4
1 3 4 1 2
2 4 3 2 1
3 1 2 3 4
4 2 1 4 3

A2 1 2 3 4
1 4 3 2 1
2 3 4 1 2
3 2 1 4 3
4 1 2 3 4

A3 1 2 3 4
1 1 2 3 4
2 2 1 4 3
3 3 4 1 2
4 4 3 2 1

A4 1 2 3 4
1 2 1 4 3
2 1 2 3 4
3 4 3 2 1
4 3 4 1 2

Table 21 Table 22 Table 23 Table 24
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The equivalence relation of the 3-group ({1, 2, 3, 4}, A) defined by the equality

({1, 2, 3, 4}/ θ = {{1, 2}, {3, 4}}

is a congruence relation of the 3-group ({1, 2, 3, 4}, A) (:Tables 21 − 24).

By Table 21 − 24, we conclude that the pairs ({1, 2}, A) and ({3, 4}, A)

are not 3-groups.

5.2. Example: Let ({1, 2, 3, 4}, ·) be Klein’s group: Table 1. Then,

({1, 2, 3, 4}, B), where B(x3
1)

def
= x1 · x2 · x3 · 2

for every x3
1 ∈ {1, 2, 3, 4}, is a 3-group; Table 41−44, Bi(x, y)

def
= B(x, i, y) i ∈

{1, 2, 3, 4} [:B1(x, y) = x ·y ·2, B2(x, y) = x ·y, B3(x, y) = x ·y ·4, B4(x, y) =

x · y · 3].
B1 1 2 3 4
1 2 1 4 3
2 1 2 3 4
3 4 3 2 1
4 3 4 1 2

B2 1 2 3 4
1 1 2 3 4
2 2 1 4 3
3 3 4 1 2
4 4 3 2 1

B3 1 2 3 4
1 4 3 2 1
2 3 4 1 2
3 2 1 4 3
4 1 2 3 4

B4 1 2 3 4
1 3 4 1 2
2 4 3 2 1
3 1 2 3 4
4 2 1 4 3

Table 41 Table 42 Table 43 Table 44

The equivalence relation θ in the set {1, 2, 3, 4} defined by the equality

{1, 2, 3, 4}/ θ = {{1, 2}, {3, 4}}

is a congruence relation of the 3-group ({1, 2, 3, 4}, B) (:Table 41 − 44).

By table 41 − 44, we conclude that the pairs ({1, 2}, B) and ({3, 4}, B)

are 3-groups. They are represented, respectively in Table 61− 62 and Table

71 − 72.

B1 1 2
1 2 1
2 1 2

B2 1 2
1 1 2
2 2 1

B3 3 4
3 4 3
4 3 4

B4 3 4
3 3 4
4 4 3

Table 61 Table 62 Table 71 Table 72

Examples 5.1 and 5.2 are from [Ušan 1998/1]. See, also [Janeva 1995].
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5.3. Remark [Janeva 1995]: There exists a 3-group (Q, A) and its congru-

ence θ such that the following statements hold: a) |Q/θ| > 1, and b) exactly

one θ−class is a 3-subgroup of the 3-group (Q,A).

By 5.1–5.3, we conclude that the following proposition holds:

5.4. Proposition: If n ≥ 3, then: (a) there exist n−group (Q, A) and

its congruence θ such that for every Ca ∈ Q/θ the pair (Ca, A) is not an

n−group; (b) there exist an n−group (Q,A) and its congruence θ such that

for every Ca ∈ Q/θ the pair (Ca, A) is an n−group; and (c) there exist

n−group (Q,A) and its congruence θ such that exactly one Ca ∈ Q/θ the

pair (Ca, A) is an n−group. [|Q/θ| ≥ 2.]

5.5. Theorem [Ušan 1998/2]: Let (Q,A) be an n−group and let n ≥ 3.

Further on, let θ be an arbitrary element of the set Con(Q,A). Then, for

every Ct ∈ Q/θ there is an nHG−algebra (Q, {·, ϕ, b}) associated to the

n−group (Q,A) such that the following statements hold:

(i) (Ct, ·) ¢ (Q, ·),
(ii) (Ct, ϕ) is a 1-guasigroup, and

(iii) (Ct, A)is an n−subgroup of the n−group (Q,A) iff b ∈ Ct.

Proof. We prove that under the assumption the following statements hold:

1◦ For every Ct ∈ Q/θ there is a sequence cn−2
1 over Q such that

(0) e(cn−2
1 ) = t,

where e is an {1, n}−neutral operation of the n−group (Q,A);

2◦ Let the sequence cn−2
1 over Q satisfies (0). Then the algebra (Q, {·, ϕ, b})

defined by

(1) x · ydef
= A(x, cn−2

1 , y),

(2) ϕ(x)
def
= A(e(cn−2

1 ), x, cn−2
1 ) and

(3) b
def
= A(

n

e(cn−2
1 )|) [= A(

n
t)]

is an nHG−algebra associated to the n−group (Q,A);

3◦ (Ct, ·) is a subgroup of the group (Q, ·);
4◦ (Ct, ·) ¢ (Q, ·);
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5◦ (Ct, ϕ) is a 1-quasigroup; and

6◦ The statement (iii) holds.

The proof of the statement 1◦ : By Th. 1.4 from Chapter IV.

The proof of the statement 2◦ : By Th. 4.1 from Chapter IV.

The proof of the statement 3◦ :

By Def. 2.1 from Chapter II and by 1◦, we conclude that e(cn−2
1 ) is the

neutral element of the group (Q, ·), whence, by (0), we conclude that the

neutral element e(cn−2
1 ) of the group (Q, ·) belongs to Ct, i.e., that

(4) e(cn−2
1 ) ∈ Ct.

Further on, if −1 is an inverse operation in the n−group (Q,A) [Th. 1.3 from

Chapter III], then the unary operation −1 in Q, defined by

(5) x−1def
= (cn−2

1 , x)−1,

is an inverse operation in the group (Q, ·). In addition, for every θ ∈ P (Q2)

the following implication holds

(6) θ ∈ Con(Q,A) ⇒ θ ∈ Con(Q,−1 ) .

[Th. 2.1 from Chapter VI.]

Finally, by 1◦ 2◦, (4) − (6), 1 from VI, Th. 2.1 from VI and by Th. 1.3

from Chapter III, we conclude that for every x, y ∈ Q the following series of

implications holds
x ∈ Ct ∧ y ∈ Ct ⇒ x θ e(cn−2

1 ) ∧ y θ e(cn−2
1 )

⇒ (cn−2
1 , x)−1 θ (cn−2

1 , e(cn−2
1 ))−1 ∧ y θ e(cn−2

1 )
⇒ A((cn−2

1 , x)−1, cn−2
1 , y) θ A((cn−2

1 , e(cn−2
1 ))−1, cn−2

1 , e(cn−2
1 ))

⇒ A((cn−2
1 , x)−1, cn−2

1 , y) θ e(cn−2
1 )

⇒ x−1 · y θ e(cn−2
1 )

⇒ x−1 · y ∈ Ct,
whence, we conclude that (Ct, ·) is a subgroup of the group (Q, ·).

The proof of the statement 4◦ :

Let a be an arbitrary element from Q and let x be an arbitrary element

from Ct. Then, by Th. 2.1, Th. 1.3 from Chapter III, 1◦, 2◦ and (5), we

conclude that the following series of equivalences holds
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x ∈ Ct ⇔ x θ e(cn−2
1 )

⇔ A(a, cn−2
1 , x) θ A(a, cn−2

1 , e(cn−2
1 ))

⇔ A(a, cn−2
1 , x) θ a

⇔ A(A(a, cn−2
1 , x), cn−2

1 , (cn−2
1 , a)−1) θ A(a, cn−2

1 , (cn−2
1 , a)−1)

⇔ A(A(a, cn−2
1 , x), cn−2

1 , (cn−2
1 , a)−1) θ e(cn−2

1 )
⇔ a · x · a−1 ∈ Ct.

The proof of the statement 5◦ : By (i), by Th. 3.1 and by Th. 4.4.

The proof of the statement 6◦ :

By 1◦ − 3◦ and by 5◦, we conclude that for every xn
1 ∈ Ct there is y ∈ Ct

such that the following equality holds

A(xn
1 ) = y · b.

Whence, by 3◦, we conclude that (Ct, A) is an n−groupoid iff b ∈ Ct. Finally,

hence, by 3◦ and by 5◦, we conclude that the statement (iii) holds. 2

6 On superpositions of an n−ary operations

6.1. Definition: Let (Q,A) be an n−groupoid and n ≥ 2. Then:

(i)
1

A
def
= A; and

(ii) for every m ∈ N and for every x
(m+1)(n−1)+1
1 ∈ Q

m+1

A (x
(m+1)(n−1)+1
1 )

def
= A(

m

A(x
m(n−1)+1
1 ), x

(m+1)(n−1)+1
m(n−1)+2 ).

6.2. Proposition: Let (Q,A) be an n−semigroup, n ≥ 2 and m ∈ N.

Then, for every x
(m+1)(n−1)+1
1 ∈ Q and for every t ∈ {1, . . . , m(n − 1) + 1}

the following equality holds

(1)
m

A(xt−1
1 , A(xt+n−1

t ), x
(m+1)(n−1)+1
t+n ) =

m+1

A (x
(m+1)(n−1)+1
1 ).

Sketch of the proof.

1) m = 1 : By Def. 6.1 and Def. 1.1 from Chapter I, we conclude that the

following equality holds

A(ai−1
1 , A(ai+n−1

i ), a2n−1
i+n ) =

2

A(a2n−1
1 )

for every a2n−1
1 ∈ Q and for all i ∈ {1, . . . , n}.
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2) m = v : Let for every a
v(n−1)
1 , bn

1 ∈ Q and for all t ∈ {1, . . . , v(n− 1) + 1}
the following equality holds

v

A(at−1
1 , A(bn

1 ), a
v(n−1)
t ) =

v+1

A (at−1
1 , bn

1 , a
v(n−1)
t ).

3) v → v + 1 :

(v+1)+1

A (a
(v+2)(n−1)+1
1 )

(ii)
=A(

v+1

A (a
(v+1)(n−1)+1
1 ), a

(v+2)(n−1)+1
(v+1)(n−1)+2)

2)
=

A(
v

A(at−1
1 , A(at+n−1

t ), a
(v+1)(n−1)+1
t+n ), a

(v+2)(n−1)+1
(v+1)(n−1)+2)

(ii)
=

v+1

A (at−1
1 , A(at+n−1

t ), a
(v+2)(n−1)+1
t+n )

2)
=

v

A(at−1
1 , A(A(at+n−1

t ), a
t+2(n−1)
t+n ), a

(v+2)(n−1)+1
t+2(n−1)+1 )

1.1−I
==

v

A(at−1
1 , A(at+i−2

t , A(an+t+i−2
t+i−1 ), a

t+2(n−1)
n+t+i−1 ), a

(v+2)(n−1)+1
t+2(n−1)+1 )

2)
==

v+1

A (at−1
1 , at+i−2

t , A(an+t+i−2
t+i−1 ), a

(v+2)(n−1)+1
n+t+i−1 );

t ∈ {1, . . . , v(n− 1) + 1}, i ∈ {1, . . . , n}. 2

6.3. Theorem: Let (Q,A) be an n−semigroup, n ≥ 2 and (i, j) ∈ N2.

Then, for every x
(i+j)(n−1)+1
1 ∈ Q and for every t ∈ {1, . . . , i(n− 1) + 1}, the

following equality holds

(2)
i

A(xt−1
1 ,

j

A(x
t+j(n−1)
t ), x

(i+j)(n−1)+1
t+j(n−1)+1 ) =

i+j

A (x
(i+j)(n−1)+1
1 ).

Sketch of the proof.

1) For j = 1, (2) = (1).

2) Let j > 1 :
i

A(at−1
1 ,

j

A(a
t+j(n−1)
t ), a

(i+j)(n−1)+1
t+j(n−1)+1 )

(ii)
=

i

A(at−1
1 , A(

j−1

A (a
t+(j−1)(n−1)
t ), a

t+j(n−1)
t+(j−1)(n−1)+1), a

(i+j)(n−1)+1
t+j(n−1)+1 )

6.2
=

i+1

A (at−1
1 ,

j−1

A (a
t+(j−1)(n−1)
t ), a

(i+j)(n−1)+1
t+(j−1)(n−1)+1). 2

6.4. Corollary: Let (Q,A) be an n−semigroup [n−group], n ≥ 2 and i ∈ N.
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Then, (Q,
i

A) is an (i(n− 1) + 1)−semigroup [(i(n− 1) + 1)−group].9 2

See, also [Čupona 1969].

7 On the lattice of congruences on a class of

polyadic groups

7.1. Theorem [Ušan 1999/4]: Let (Q,A) be an n−group and let n ≥ 2.

Then for every k ∈ N the following equality holds

(Con(Q,A), ◦,∩) = (Con(Q,
k

A), ◦,∩)10,

where
1

A
def
= A and

m+1

A (x
(m+1)(n−1)+1
1 )

def
= A(

m

A(x
m(n−1)+1
1 ), x

(m+1)(n−1)+1
m(n−1)+2 )11.

Proof. 1) n ≥ 3 : Firstly we prove the following statements:

1◦ If (Q, {·, ϕ, b}) is an nHG−algebra [Chapter IV], then for every k ∈
N (Q, {·, ϕ, bk}) is a (k(n− 1) + 1)HG−algebra; and

2◦ If (Q, {·, ϕ, b}) is an nHG−algebra associated to the n−group (Q,A),

then for every k ∈ N (Q, {·, ϕ, bk}) is a (k(n−1)+1)HG−algebra associated

to the (k(n− 1) + 1)−group (Q,
k

A).

Sketch of the proof of 1◦ :

a) ϕ(b1) = b, ϕ(bt) = bt,

ϕ(bt+1) = ϕ(bt) · ϕ(b) = bt · b = bt+1;

b) ϕt(n−1)(x) · bt = bt · x,
ϕ(t+1)(n−1)(x) · bt+1 = ϕt(n−1)(ϕn−1(x)) · bt · b

= bt · ϕn−1(x) · b
= bt · b · x
= bt+1 · x.

Sketch of the proof of 2◦ :

9See Th. 6.3 for i = j and Def. 1.1 from Chapter I.
10See Prop. 4.8.
11See 6. from VI.
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a)
1

A = A, A(xn
1 ) = x1 · ϕ(x2) · . . . · ϕn−1(xn) · b;

b)
t

A(x
t(n−1)+1
1 ) = x1 · ϕ(x2) · . . . · ϕt(n−1)(xt(n−1)+1) · bt;

c)
t+1

A (x
(t+1)(n−1)+1
1 ) = A(xn−1

1 ,
t

A(x(t+1)(n−1)+1
n )) =

x1 · ϕ(x2) · . . . · ϕn−2(xn−1) · ϕn−1(
t

A(x(t+1)(n−1)+1
n )) · b =

x1 ·ϕ(x2) · . . . ·ϕn−2(xn−1) ·ϕn−1(xn) · . . . ·ϕ(t+1)(n−1)(x(t+1)(n−1)+1) ·bt ·b =

x1 · ϕ(x2) · . . . · ϕ(t+1)(n−1)(x(t+1)(n−1)+1) · bt+1.

By 1◦, 2◦ and Th. 3.1 from VI, we conclude that for every k ∈ N the

following equality holds

(1) Con(Q,
k

A) = Con(Q,A).

2) n = 2 : Let (Q,A) be a group. If A = ·, then for every xk+1
1 ∈ Q the

following equality holds
k

A(xk+1
1 ) = x1 · . . . · xk+1.

Whence, for k ≥ 2, we conclude that (Q, {·, I, e) is an nHG−algebra associ-

ated to the (k + 1)−group (Q,
k

A); I
def
= {(x, x)|x ∈ Q}, e is a neutral element

in (Q,A)[= (Q, ·)]. Finally, by Th. 3.1 from VI [k + 1 ≥ 3], we conclude that

for every k ∈ N the following equality holds

Con(Q,
k

A) = Con(Q,A)[= Con(Q, ·)]. 2
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Chapter VII

ON ORDERED n−GROUPS

1 Ordered n−groups and ordered nHG−alge-

bras

1.1. Definition [Crombez 1972]: Let (Q,A) be an n−group, n ≥ 2 and

let ≤ be a partial order on Q. Let also for all x, y, zn−1
1 ∈ Q and for all

i ∈ {1, 2, . . . , n} the following implication holds

(1) x ≤ y ⇒ A(zi−1
1 , x, zn−1

i ) ≤ A(zi−1
1 , y, zn−1

i ).

Then, we say that (Q,A,≤) is an ordered n−group.

Note that in the case n = 2 (Q, A,≤) is an ordered group in the sense of

[Fusch 1963].

1.2. Theorem [Ušan, Žǐzović 1997]: Let ≤ be a partial order on Q. Also,

let (Q,A) be an n−group and let n ≥ 3. In addition, let (Q, {·, ϕ, b}) be an

arbitrary nHG−algebra associated to the n−group (Q,A). Then, (Q, A,≤)

is an ordered n−group iff for all x, y, z ∈ Q the following two, formulas hold

(2) x ≤ y ⇒ x · z ≤ y · z ∧ z · x ≤ z · y
(3) x ≤ y ⇒ ϕ(x) ≤ ϕ(y).

Proof. 1) Let (Q,A,≤) be an ordered n−group and let n ≥ 3. Also,

let e be an {1, n}−neutral operation of the n−group (Q,A). In addition,

let (Q, {·, ϕ, b}) be an arbitrary nHG−algebra associated to the n−group

(Q, A). Then, by Th. 4.1 from Chapter IV, there is at least one sequence

cn−2
1 over Q such that for every x, y ∈ Q the following two equalities hold:

x · y = A(x, cn−2
1 , y),

ϕ(x) = A(e(cn−2
1 ), x, cn−2

1 ).
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Hence, by Def. 1.1, we conclude that the formulas (2) and (3) hold in

(Q, {·, ϕ, b}).
2) Conversely, let (Q, {·, ϕ, b}) be an arbitrary nHG−algebra associated

to the n−group (Q,A). Also, let ≤ be a partial order in Q. Assume that an

nHG−algebra (Q, {·, ϕ, b}) satisfies (2) and (3). Then, for every x, y, zn−2
1 ∈

Q

21) for i ∈ {2, . . . , n− 1} the following series of implications holds

x ≤ y
(3)⇒ϕi−1(x) ≤ ϕi−1(y)

(2)⇒
z1 · . . . · ϕi−2(zi−1) · ϕi−1(x) ≤ z1 · . . . · ϕi−2(zi−1) · ϕi−1(y)

(2)⇒
z1 · . . . · ϕi−2(zi−1) · ϕi−1(x) · ϕi(zi) · . . . · b · zn−1 ≤
z1 · . . . · ϕi−2(zi−1) · ϕi−1(y) · ϕi(zi) · . . . · b · zn−1,

hence, by Definition 2.3 from Chapter IV, we conclude that the following

implication holds

x ≤ y ⇒ A(zi−1
1 , x, zn−1

i ) ≤ A(zi−1
1 , y, zn−1

i );

22) for i = 1 the following implication holds

x ≤ y
(2)⇒x · ϕ(z1) · . . . · b · zn−1 ≤ y · ϕ(z1) · . . . · b · zn−1,

hence, by Definition 2.3 from Chapter IV, we conclude that the following

implication holds

x ≤ y ⇒ A(x, zn−1
1 ) ≤ A(y, zn−1

1 ); and

23) for i = n the following implication hold

x ≤ y
(2)⇒z1 ·ϕ(z2) · . . . ·ϕn−2(zn−1) · b ·x ≤ z1 ·ϕ(z2) · . . . ·ϕn−2(zn−1) · b ·y,

whence, by Definition 2.3 from Chapter IV, we conclude that the following

implication holds

x ≤ y ⇒ A(zn−1
1 , x) ≤ A(zn−1

1 , y). 2

1.3. Example: Let (Z, +) be the additive group of all integers, and ≤ the

natural order defined on Z. Then Z with the ternary operation A defined by

A(x, y, z) = x + (−y) + z

is a 3-group.

Moreover, (Z, {+, ϕ, 0}), where ϕ(x) = −x, is an nHG−algebra associ-

ated to the 3−group (Z, A).
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Since for every x, y ∈ Z x ≤ y implies ϕ(y) ≤ ϕ(x), we conclude, by

Theorem 1.2, that (Z, A,≤) is not an ordered 3−group.

1.4. Example: Let (Z, +,≤) be as in the previous example. Let

B(xn
1 )

def
= x1 + x2 + . . . + xn + 2

for every xn
1 ∈ Z, n ≥ 3. Then, (Z,B) is an n−group with (Z, {+, I, 2}),

where I
def
= {(x, x)|x ∈ Z}, as its associated nHG-algebra. Obviously (Z, B,≤)

is an ordered n−group.

Moreover, (Z, C,≤) and (Z, D,≤) where

C(xn
1 )

def
= x1 + x2 + . . . + xn,

D(xn
1 )

def
= x1 + x2 + . . . + xn + (−2)

are ordered n−groups as well. 2

2 Two propositions more

2.1. Theorem [Ušan, Žǐzović 1997]: Let (Q,A,≤) be an ordered n−group

and let n ≥ 2. Also, let −1 be an inverse operation of the n−group (Q,A).

Then, for every x, y, zn−1
1 ∈ Q the following stetements hold

(1)
n∧

i=1
(x ≤ y ⇔ A(zi−1

1 , x, zn−1
i ) ≤ A(zi−1

1 , y, zn−1
i )), and

(2) x ≤ y ⇔ (zn−2
1 , y)−1 ≤ (zn−2

1 , x)−1.

Proof.

The proof of the stetement (1):

a) ⇒: By Def. 1.1.

b) ⇐: In the case i = 1, by Def. 1.1, we conclude

A(x, an−2
1 , a) ≤ A(y, an−2

1 , a) ⇒
A(A(x, an−2

1 , a), an−2
1 , (an−2

1 , a)−1) ≤ A(A(y, an−2
1 , a), an−2

1 , (an−2
1 , a)−1) ⇒

A(x, an−2
1 , A(a, an−2

1 , (an−2
1 , a)−1)) ≤ A(y, an−2

1 , A(a, an−2
1 , (an−2

1 , a)−1)) ⇒
A(x, an−2

1 e(an−2
1 )) ≤ A(y, an−2

1 e(an−2
1 )) ⇒ x ≤ y.

The case i = n may be proved analogously.

Let now i ∈ {2, . . . , n− 1}. Then
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A(ai−1
1 , x, an−1

i ) ≤ A(ai−1
1 , y, an−1

i ) ⇒
A(bn−1

i , A(ai−1
1 , x, an−1

i ), bi−1
1 ) ≤ A(bn−1

i , A(ai−1
1 , y, an−1

i ), bi−1
1 ) ⇒

A(A(bn−1
i , ai−1

1 , x), an−1
i , bi−1

1 ) ≤ A(A(bn−1
i , ai−1

1 , y), an−1
i , bi−1

1 )
”i=1”
=⇒

A(bn−1
i , ai−1

1 , x) ≤ A(bn−1
i , ai−1

1 , y)
”i=n”
=⇒ x ≤ y.

Sketch of the proof of the statement (2):

x ≤ y
(1)⇔ A((an−2

1 , x)−1, an−2
1 , x) ≤ A((an−2

1 , x)−1, an−2
1 , y)

⇔ e(an−2
1 ) ≤ A((an−2

1 , x)−1, an−2
1 , y)

⇔ A(e(an−2
1 ), an−2

1 , (an−2
1 , y)−1) ≤

A(A((an−2
1 , x)−1, an−2

1 , y), an−2
1 , (an−2

1 , y)−1)
⇔ (an−2

1 , y)−1 ≤ A((an−2
1 , x)−1, an−2

1 , A(y, an−2
1 , (an−2

1 , y)−1))
⇔ (an−2

1 , y)−1 ≤ A((an−2
1 , x)−1, an−2

1 , e(an−2
1 ))

⇔ (an−2
1 , y)−1 ≤ (an−2

1 , x)−1. 2

2.2. Theorem [Ušan, Žǐzović 1997]: Let (Q,A,≤) be an ordered n−group

and let n ≥ 3. Also, let −1 be an inverse operation of the n−group (Q,A), and

let e be an {1, n}−neutral operation of (Q,A). Then, for every x, y, b, an−3
1 ∈

Q the following stetements hold

(3)
n−2∧
i=1

(x ≤ y ⇔ e(ai−1
1 , y, an−3

i ) ≤ e(ai−1
1 , x, an−3

i )); and

(4)
n−2∧
i=1

(x ≤ y ⇒ (ai−1
1 , y, an−3

i , b)−1 ≤ (ai−1
1 , x, an−3

i , b)−1).

Proof.

The proof of the statement (3):

Since

(5) A(a, bn−2
1 , b) = A(A(a, an−2

1 , (an−2
1 , e(bn−2

1 ))−1), an−2
1 , b)

by Prop. 1.3 from Chapter IV, then

x ≤ y
(1)⇐⇒ A(a, ai−1

1 , x, an−3
i , b) ≤ A(a, ai−1

1 , y, an−3
i , b)

(5)⇐⇒ A(A(a, cn−2
1 , (cn−2

1 , e(ai−1
1 , x, an−3

i ))−1), cn−2
1 , b) ≤

A(A(a, cn−2
1 , (cn−2

1 , e(ai−1
1 , y, an−3

i ))−1), cn−2
1 , b)



70 VII On ordered n−groups

(1)⇐⇒ A(a, cn−2
1 , (cn−2

1 , e(ai−1
1 , x, an−3

i ))−1) ≤
A(a, cn−2

1 , (cn−2
1 , e(ai−1

1 , y, an−3
i ))−1)

(1)⇐⇒ (cn−2
1 , e(ai−1

1 , x, an−3
i ))−1 ≤ (cn−2

1 , e(ai−1
1 , y, an−3

i ))−1

(2)⇐⇒ e(ai−1
1 , y, an−3

i ) ≤ e(ai−1
1 , x, an−3

i ).

The proof of the statement (4):

Let E be an {1, 2n− 1}−neutral operation of the (2n− 1)−group (Q,
2

A);

cf. Chapter III and 6 from Chapter VI. Hence, by 1.1 and by (3), we conclude

x ≤ y ⇒ E(ai−1
1 , y, an−3

i , b, ai−1
1 , y, an−3

i ) ≤ E(ai−1
1 , y, an−3

i , b, ai−1
1 , x, an−3

i )

and

x ≤ y ⇒ E(ai−1
1 , y, an−3

i , b, ai−1
1 , x, an−3

i ) ≤ E(ai−1
1 , x, an−3

i , b, ai−1
1 , x, an−3

i ).

Whence, by transitivity of ≤, we conclude

x ≤ y ⇒ E(ai−1
1 , y, an−3

i , b, ai−1
1 , y, an−3

i ) ≤ E(ai−1
1 , x, an−3

i , b, ai−1
1 , x, an−3

i ).

This completes the proof because

(ai−1
1 , z, an−3

i , b)−1def
= E(ai−1

1 , z, an−3
i , b, ai−1

1 , z, an−3
i );

cf. Chapter III. 2

3 On left and right cone

3.1. Theorem [Ušan, Žǐzović 1977]: Let (Q,A,≤) be an ordered n−group,

n ≥ 3 and let e be an {1, n}−neutral operation of the n−group (Q, A). Also,

let −1 be an inverse operation of (Q,A). Moreover, let a be an arbitrary

element of the set Q and let an−2
1 be an sequence over Q such that e(an−2

1 ) = a.

Then:

(i) ({x|a ≤ x}, A) is an n−subsemigroup of the n−group (Q,A) iff a ≤
A(

n
a);

(ii) If ({x|(an−2
1 , A(

n
a))−1 ≤ x}, A) is an n−subsemigroup of the n−group

(Q,A) and (Q,A,≤) is a linearly ordered n−group, then A(
n
a) ≤ a;

(îi) If A(
n
a) ≤ a, then ({x|(an−2

1 , A(
n
a))−1 ≤ x}, A) is an n−subsemigroup
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of the n−group (Q,A);

(iii) Let a ≤ A(
n
a) and let c be an arbitrary element of the set Q such that

a ≤ c. Then ({x|c ≤ x}, A) is an n−subsemigroup of the n−group

(Q,A); and

(iv) Let A(
n
a) ≤ a and let c be an arbitrary element of the set Q such that

(an−2
1 , A(

n
a))−1 ≤ c. Then ({x|c ≤ x}, A) is an n−subsemigroup of the

n−group (Q,A).

Proof. 1) Let a be an arbitrary element of the set Q. Also let an−2
1 be an

sequence over Q such that e(an−2
1 ) = a [cf. Prop. 1.4 from Chapter IV].

Moreover, let

(a) x · ydef
= A(x, an−2

1 , y),

(b) ϕ(x)
def
= A(a, x, an−2

1 ),

(c) b
def
= A(

n
a) and

(d) x−1def
= (an−2

1 , x)−1

for all x, y ∈ Q. Then:

1◦ (Q, {·, ϕ, b}) is an nHG−algebra associated to (Q,A) [cf. Th. 4.1

from Chapter IV];

2◦ a = e(an−2
1 ) is a neutral element of the group (Q, ·); and

3◦ −1 is an inverse operation of the group (Q, ·).
By Th. 1.2 and 1◦, we conclude that

4◦ (Q, ·,≤) is an ordered group; and

5◦ x ≤ y ⇒ ϕ(x) ≤ ϕ(y) for all x, y ∈ Q.

2) The proof of (i) :

a) ⇒: Assume now that ({x|a ≤ x}, A) is an n−subsemigroup of the

n−group (Q,A). Then for all xn
1 ∈ Q from xn

1 ∈ {x|a ≤ x} it follows A(xn
1 ) ∈

{x|a ≤ x}, whence we conclude that a ≤ A(
n
a).
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b) ⇐: Let a ≤ A(
n
a). Hence, by 1◦, 4◦ and 5◦, we conclude that for every

sequence xn
1 over {x|a ≤ x} the following two formulas hold:

a ≤ a · ϕ(a) · . . . · ϕn−1(a) · b
and

a · ϕ(a) · . . . · ϕn−1(a) · b ≤ x1 · ϕ(x2) · . . . · ϕn−1(xn) · b 1.

Whence, by transitivity of ≤, we conclude

a ≤ x1 · ϕ(x2) · . . . · ϕn−1(xn) · b
for all xn

1 ∈ {x|a ≤ x}, i.e. by 1◦, for all xn
1 ∈ {x|a ≤ x},

A(xn
1 ) ∈ {x|a ≤ x}.

So ({x|a ≤ x}, A) is an n−subsemigroup of the n−group (Q,A).

3) The proof of (ii) :

Assume now that ({x|b−1 ≤ x}, A) is an n−subsemigroup of the n−group

(Q, A); b = A(
n
a), (d), 3◦. Then for all xn

1 ∈ Q from xn
1 ∈ {x|b−1 ≤ x} it

follows b−1 ≤ A(xn
1 ), whence, by b−1 ≤ b−1, 1◦ and ϕ(b−1) = b−1, we

conclude that
b−1 ≤ A(b−1, b−1, . . . , b−1)

= b−1 · ϕ(b−1) · . . . · ϕn−2(b−1) · b · b−1

= b−1, b−1, . . . , b−1,
i.e. bn−2 ≤ a. Hence b ≤ a by (Q, ·,≤) is a linearly ordered group [4◦ and

(Q, A,≤) is a linearly ordered n−group2].

4) The proof of (îi) :

Let b ≤ a; b = A(
n
a) − (c). Then, by 4◦, we have a ≤ b−1. Whence,

by 1◦, 2◦, 4◦, 5◦ and ϕ(b−1) = b−1, for all xn
1 ∈ {x|b−1 ≤ x}, we obtain

b−1 ≤ b−1 · b−1 = b−1 · ϕ(b−1) · ϕ2(a) · . . . · ϕn−2(a) · b · b−1

≤ b−1 · ϕ(b−1) · ϕ2(b−1) · . . . · ϕn−2(b−1) · b · b−1

≤ x1 · ϕ(x2) · ϕ2(x3) · . . . · ϕn−2(xn−1) · b · xn

= A(xn
1 ),

i.e. b−1 ≤ A(xn
1 ) for all xn

1 ∈ {x|b−1 ≤ x}. So ({x|b−1 ≤ x}, A) is an

n−subsemigroup of the n−group (Q,A).

1x ≤ y ∧ u ≤ v ⇒ x · u ≤ y · v.
2¬(x ≤ y) ⇔ y < x, (p ⇒ q) ⇔ (¬q ⇒ ¬p), bn−2 ≤ a.
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5) Sketch of the proof of (iii) :
c = c · ϕ(a) · . . . · ϕn−1(a) · a ≤ c · ϕ(c) · . . . · ϕn−1(c) · a
≤ c · ϕ(c) · . . . · ϕn−1(c) · b
≤ x1 · ϕ(x2) · . . . · ϕn−1(xn) · b
= A(xn

1 );

a ≤ b, b = A(
n
a), a ≤ c, a = e(an−2

1 ) − 2◦, footnote 1, xn
1 ∈ {x|c ≤ x}.

6) Sketch of the proof of (iv) :
c = c · a · . . . · a · b · b−1 = c · ϕ(a) · . . . · ϕn−2(a) · b · b−1

≤ c · ϕ(b−1) · . . . · ϕn−2(b−1) · b · b−1

≤ c · ϕ(c) · . . . · ϕn−2(c) · b · c
≤ x1 · ϕ(x2) · . . . · ϕn−2(xn−1) · b · xn

= A(xn
1 );

b ≤ a ⇔ a ≤ b−1, b−1 ≤ c, xn
1 ∈ {x|c ≤ x}. 2

3.2. Remark: The above theorem describes so–called the right cone (cf.

[Fuchs 1963]), i.e. the set KR(c)
def
= {x|c ≤ x}. The analogous result holds for

the left cone KL(c)
def
= {x|x ≤ c}. 2
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Chapter VIII

ON TOPOLOGICAL n−GROUPS

1 Introduction

1.1. Definition: Let (Q,F ) be an m−groupoid, m ≥ 1 and let Q be equipped

with a topology O. Then, the m−ary operation F is continuous in O iff for

every xm
1 ∈ Q the following statement holds

(∀OF (xm
1 ) ∈ O)(∃Oxi

∈ O)m
1 F (Ox1 , . . . , Oxm) ⊆ OF (xm

1 ).
1

1.2. Remark: Let (Q,F ) be an m−groupoid, m ∈ N and let Si be a subset

of Q and Si 6= ∅. Moreover, let

F(Sm
1 )

def
=

⋃
(xm

1 )∈S1×...×Sm

{F (xm
1 )}.

Howeover, instead of F, usually, we write F.

1.3. Definition [Ušan 1998/4]: Let (Q,A) be an n−group, −1 its inverse

operation (Chapter III), n ≥ 2 and let Q be equipped with a topology O. Then,

we say that (Q,A,O) is a topological n−group iff

(1) The n−ary operation A is continuous in O; and

(2) The (n− 1)−ary operation −1 is continuous in O.2

1.4. Remark: Topological n−groups have been defined in mutually different

ways. Each of these definitions was different from the description given in

Definition 1.3. In addition, the definitions in [Čupona 1971], [Enders 1995]

and [Ušan 1998/4] are related to each n ≥ 2, while those in [Crombez, Six

1974] and [Žǐzović 1976] are restricted (only) to each n ≥ 3. All definitions

1Oz ∈ O and z ∈ Oz.
2For n = 2 (Q,A,O) is a topological group [:e.g. [Pontryagin 1973]].
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from the cited papers are mutually equivalent for n ≥ 3, while the definitions

from the papers [Čupona 1971], [Enders 1995] and [Ušan 1998/4] are also

mutually equivalent for n = 2 [:[Rusakov 1992 ], [Ušan 1998/4 ]].

2 Auxiliary propositions

2.1. Proposition [Ušan 1997/4, 1999/6]: Let (Q,A) be an n−group, −1 its

inverse operation, e its {1, n}−neutral operation and n ≥ 2. Also let

(l) −1A(x, an−2
1 , y) = z

def⇐⇒A(z, an−2
1 , y) = x and

(r) A−1(x, an−2
1 , y) = z

def⇐⇒A(x, an−2
1 , z) = y

for all x, y, z ∈ Q and for every sequence an−2
1 over Q. Then, for all x, y ∈ Q

and for every sequence an−2
1 over Q the following equalities hold

(1l)
−1A(x, an−2

1 , y) = A(x, an−2
1 , (an−2

1 , y)−1),

(2l) e(an−2
1 ) =−1A(x, an−2

1 , x),

(3l) (an−2
1 , x)−1 =−1A(−1A(x, an−2

1 , x), an−2
1 , x),

(4l) A(x, an−2
1 , y) =−1A(x, an−2

1 ,−1A(−1A(y, an−2
1 , y), an−2

1 , y)),

(1r) A−1(x, an−2
1 , y) = A((an−2

1 , x)−1, an−2
1 , y),

(2r) e(an−2
1 ) = A−1(x, an−2

1 , x),

(3r) (an−2
1 , x)−1 = A−1(x, an−2

1 , A−1(x, an−2
1 , x)) and

(4r) A(x, an−2
1 , y) = A−1(A−1(x, an−2

1 , A−1(x, an−2
1 , x)), an−2

1 , y).

Proof. The proof of (1l) :

By (l), by Def. 1.1 from Chapter I and by Th. 1.3 from Chapter III, we

conclude that the following series of equivalences holds

−1A(x, an−2
1 , y) = z

(l)⇐⇒A(z, an−2
1 , y) = x ⇔

A(A(z, an−2
1 , y), an−2

1 , (an−2
1 , y)−1) = A(x, an−2

1 , (an−2
1 , y)−1) ⇔

A(z, an−2
1 , A(y, an−2

1 , (an−2
1 , y)−1)) = A(x, an−2

1 , (an−2
1 , y)−1) ⇔

A(z, an−2
1 , e(an−2

1 )) = A(x, an−2
1 , (an−2

1 , y)−1) ⇔
z = A(x, an−2

1 , (an−2
1 , y)−1)

for all x, y, z ∈ Q and for every sequence an−2
1 over Q, and hence
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−1A(x, an−2
1 , y) = A(x, an−2

1 , (an−2
1 , y)−1).

The proof of (2l) :

By (l), we conclude that the following equivalence holds
−1A(x, an−2

1 , x) = e(an−2
1 ) ⇔ A(e(an−2

1 ), an−2
1 , x) = x

for all x ∈ Q and for every sequence an−2
1 over Q. Whence, by Th. 2.6 from

Chapter II, we conclude that (2l) holds.

Sketch of the proof of (3l) :
−1A(−1A(x, an−2

1 , x), an−2
1 , x) = (an−2

1 , x)−1 (l)⇐⇒
A((an−2

1 , x)−1, an−2
1 , x) =−1A(x, an−2

1 , x)
(2l)⇐⇒

A((an−2
1 , x)−1, an−2

1 , x) = e(an−2
1 ).

Sketch of the proof of (4l) :

A(x, an−2
1 , y) =−1A(x, an−2

1 ,−1A(−1A(y, an−2
1 , y), an−2

1 , y)
(l),(3l)⇐⇒

x = A(A(x, an−2
1 , y), an−2

1 , (an−2
1 , y)−1) ⇐⇒

x = A(x, an−2
1 , A(y, an−2

1 , (an−2
1 , y)−1)) ⇐⇒

x = A(x, an−2
1 , e(an−2

1 )).

Similarly, it is possible to prove also the equalities (1r) − (4r) for all

x, y ∈ Q and for every sequence an−2
1 over Q. 2

By Def. 1.1, we conclude that the following two propositions hold.

2.2. Proposition: Let (Q, f) be an n−groupoid, let (Q, g) be an m−groupoid,

let m,n ∈ N and let Q be equipped with a topology O. Also, let f and g be

continuous in O, and let

F (xm
1 , yn−1

1 )
def
= f(yi−1

1 , g(xm
1 ), yn−1

i ), i ∈ {1, . . . , n},
for all xm

1 , yn−1
1 ∈ Q. Then, F is continuous in O.

2.3. Proposition: Let (Q, f) be an n−groupoid, n ≥ 2 and let Q be equipped

with a topology O. Also, let F be continuous in O, and let

F (xn−1
1 )

def
= f(xi−1

1 , c, xn−1
i ), i ∈ {1, . . . , n},

for all xn−1
1 ∈ Q, where c is a (fixed) element of the set Q. Then, F is

continuous in O.
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[f(Ox1 , . . . , Oxi−1
, {c}, Oxi

, . . . , Oxn−1) ⊆ Of(xi−1
1 ,c,xn−1

i ).]

2.4. Proposition: Let (Q,F ) be an m−groupoid, m ≥ 2 and let Q be

equipped with a topology O. Also, let the m−ary operation F be continuous

in O, and let

(0) Φ(x, am−2
1 )

def
= F (x, am−2

1 , x)

for all x ∈ Q and for every sequence am−2
1 over Q. Then (m− 1)−ary oper-

ation Φ is continuous in O.

Proof. Let

(∀OF (xm
1 ) ∈ O)(∃Oi ∈ O)m

1 F (Ox1 , . . . , Oxm) ⊆ OF (xm
1 ).

Whence

(1) (∀OF (x,am−2
1 ,x) ∈ O)(∃Ox ∈ O)(∃Ox ∈ O)(∃Oai

∈ O)m−2
1

F (Ox, Oa1 , . . . , Oam−2 , Ox) ⊆ OF (x,am−2
1 ,x).

Also let

(2) Ox
def
= Ox ∩Ox.

By (0), (1) and (2), we conclude that the following formula holds

(∀OΦ(x,am−2
1 ) ∈ O)(∃Ox ∈ O)(∃Oai

∈ O)m−2
1 Φ(Ox, Oa1 , . . . , Oam−2) ⊆

OΦ(x,am−2
1 ).

Similarly, it is posible to prove also, for example, the three following

propositions. 2

2.5. Proposition: Let (Q, f) be an (m + r + s + t)-groupoid, let m ≥
1, r + s + t ≥ 2 and r, s, t ∈ N ∪ {0}. Also, let Q be equipped with a topology

O, and let f be continuous in O. Further on, let

F (x, ym
1 )

def
= f(

r
x, yi−1

1 ,
s
x, ym

i ,
t
x)

for all x, ym
1 ∈ Q, i ∈ {1, . . . ,m + 1}. Then, F is continuous in O.

2.6. Proposition: Let (Q, f) be a (r+t+1)-groupoid, (Q, g) be a (r+t+1)-

groupoid, (Q, h) be a (s + t)-groupoid, let t ∈ N and let r, s ∈ N ∪ {0}. Also,

let Q be equipped with a topology O, and let f, g and h be continuous in O.

Further on, let

F (xs
1, a

t
1, y

r
1)

def
= f(h(xs

1, a
t
1), a

t
1, y

r
1),
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Φ(xr
1, a

t
1, y

s
1)

def
= g(xr

1, a
t
1, h(ys

1, a
t
1)),

F̂ (xs
1, a, yr

1)
def
= f(h(xs

1,
t
a),

t
a, yr

1) and

Φ̂(xr
1, a, ys

1)
def
= g(xr

1,
t
a, h(ys

1,
t
a)).

Then F,Φ, F̂ and Φ̂ are continuous in O.

2.7. Proposition: Let (Q, f) be a (3 + s)−groupoid, s ∈ N, let g be a

t−groupoid and t ≥ 1. Also, let Q be equipped with a topology O, and let f

and g be continuous in O. Further on, let

F (x, at
1)

def
= f(g(at

1),
i−1
x , g(

t
x),

s−i+1
x , g(at

1))

for all x, at
1 ∈ Q; i ∈ {1, . . . , s + 1}. Then, F is continuous in O.

2.8. Proposition [Ušan 1998/4]: Let (Q,A) be an n−group, −1 its inverse

operation (Chapter III), e its {1, n}−neutral operation, and n ≥ 3. Then for

all a, an−2
1 ∈ Q the following equality holds

(an−2
1 , a)−1 = A(e(an−2

1 ),
n−3
a , e(

n−2
a ), e(an−2

1 )).

Proof. By Def. 1.1 from Chapter I, and by Th. 3.1 from Chapter III, we

conclude that for all an−2
1 , a ∈ Q the following sequence of equivalences holds

A((an−2
1 , a)−1, an−2

1 , a) = e(an−2
1 ) ⇔

A(A((an−2
1 , a)−1, an−2

1 , a),
n−3
a , e(

n−2
a ), e(an−2

1 )) =

A(e(an−2
1 ),

n−3
a , e(

n−2
a ), e(an−2

1 )) ⇔
A((an−2

1 , a)−1, an−3
1 , A(an−2, a,

n−3
a , e(

n−2
a )), e(an−2

1 )) =

A(e(an−2
1 ),

n−3
a , e(

n−2
a ), e(an−2

1 )) ⇔
A((an−2

1 , a)−1, an−3
1 , an−2, e(an−2

1 )) =

A(e(an−2
1 ),

n−3
a , e(

n−2
a ), e(an−2

1 )) ⇔
(an−2

1 , a)−1 = A(e(an−2
1 ),

n−3
a , e(

n−2
a ), e(an−2

1 )).

Whence, we conclude that the proposition is satisfied. 2
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2.9. Proposition [Žǐzović 1998]: Let (Q,A) be an n−group, e its {1, n}−neutral

operation, n ≥ 4, and let

(1) a
def
= e(

n−2
a )3

for all a ∈ Q. Then for every sequence an−2
1 over Q the following equality

holds

(2) e(an−2
1 ) =

n−3

A (an−2,
n−3
an−2, . . . , a1,

n−3
a1).

Proof. By (1), by Def. 6.1 and by Prop. 6.3 from Chapter VI, and by Th.

2.6 from Chapter II, we conclude that for every sequence an−2
1 over Q and

for all x ∈ Q the following series of equalities hold

A(
n−3

A (an−2,
n−3
an−2, . . . , a1,

n−3
a1), a

n−2
1 , x) =

A(
n−3

A (e(
n−2
an−2),

n−3
an−2, . . . , e(

n−2
a1),

n−3
a1), a

n−2
1 , x) =

- - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - -

A(e(
n−2
an−2),

n−3
an−2, an−2, x) = x,

whence, by Def. 2.1 from Chapter II, by Th. 2.6 from Chapter II and by

(1), we conclude that for every sequence an−2
1 over Q and for all x ∈ Q the

following equality holds

A(
n−3

A (an−2,
n−3
an−2, . . . , a1,

n−3
a1), a

n−2
1 , x) = A(e(an−2

1 ), an−2
1 , x).

Whence, by Def. 1.1 from Chapter I, we conclude that for every sequence

an−2
1 over Q the equality (2) holds. 2

3 Main propositions

3.1. Theorem [Ušan 1999/1]: Let (Q,A) be an n−group, −1 its inverse

operation (Chapter III), n ≥ 2 and let Q be equipped with a topology O. Also

let

(0) −1A(x, an−2
1 , y) = z

def⇔A(z, an−2
1 , y) = x and

3Actually, the unary operation skew element is in question; Apendix 2. For n = 3
a = e(a).
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(0̂) A−1(x, an−2
1 , y) = z

def⇔A(x, an−2
1 , z) = y

for all x, y, z ∈ Q and for every sequence an−2
1 over Q. Then the following

stetements are equivalent:

(i) the n−ary operation A is continuous in O and the (n− 1)−ary op-

eration −1 is continuous in O [cf. Def. 1.3];

(ii) the n−ary operation −1A is continuous in O; and

(iii) the n−ary operation A−1 is continuous in O.

Proof. 1) Let Q be equipped with topology O. Also, let the n−ary operation

A be continuous in O and the (n− 1)−ary operation −1 be continuous in O.

Then, by (1l)[(1r)] from 2.1, and by Prop. 2.6, we conclude that the n−ary

operation −1A[A−1] is continuous in O.

2) Let Q be equipped with topology O. Also, let the n−ary operation
−1A[A−1] be continuous in O. Then by (3l) and (4l) [(3r) and (4r)] from

Prop. 2.1, and by Prop. 2.4, and by Prop. 2.6, we conclude that the n−ary

operation A is continuous inO and the (n−1)−ary operation −1 is continuous

in O. 2

3.2. Remark: In [Čupona 1971], (Q,A,O) is a topological n−group iff

following statements hold: (a) the n−ary operation A is continuous O, (b)

the n−ary operation −1A is continuous in O, and (c) the n−ary operation

A−1 is continuous in O. S. A. Ruskov has proved (1984) [cf. [Rusakov 1992]]

that the n−group (Q,A) is topological with respect to the topology O iff A

and −1A or A and A−1 are continuous in the topology O.

3.3. Theorem [Ušan 1998/4]: Let (Q,A) be an n−group, n ≥ 3, and let

(Q, {·, ϕ, b}) be an arbitrary nHG−algebra associated to the n−group (Q,A)

[cf. Chapter III].Also, let Q be aquipped with a topology O. Then, (Q,A,O)

is a topological n−group iff the following statements hold

(1) (Q, ·,O) is a topological group; and

(2) the unary operation ϕ is continuous in O.
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Proof. 1) ⇒: Let (Q,A,O) be a topological n−group (Def. 1.3), and let

n ≥ 3. Also, let e and −1, respectively, be an {1, n}−neutral operation and

an inverse operation of the n−group (Q,A). In addition, let (Q, {·, ϕ, b}) be

an arbitrary nHG−algebra associated to the n−group (Q,A). Then, by Th.

4.1 from Chapter IV, there is at least one sequence cn−2
1 over Q such that for

every x, y ∈ Q the following equalities hold

(3) x · y = A(x, cn−2
1 , y); and

(4) ϕ(x) = A(e(cn−2
1 ), x, cn−2

1 ).

Let −1 be an inverse operation of the group (Q, ·). By (3), Th. 3.1 from

Chapter III, and by Th. 4.1 from Chapter IV, we conclude that for every

x ∈ Q the following equality holds

(5) x−1 = (cn−2
1 , x)−1;

e(cn−2
1 ) is a neutral element of the group (Q, ·).
Finally, by (3)-(5), and by Prop. 2.3, we conclude that the statements

(1) and (2) hold.

2) ⇐: Let (Q, {·, ϕ, b}) be an nHG−algebra associated to the n−group

(Q,A). So, for all xn
1 ∈ Q the following equality holds

(6) A(xn
1 ) = x1 · ϕ(x2) · . . . · ϕn−2(xn−1) · b · xn.

Whence, by Th. 1.3 from Chapter III, and by Prop. 4.2 from Chapter IV,

we conclude that for all xn−2
1 , x ∈ Q the following equality holds

(7) (xn−2
1 , x)−1 = (ϕ(x1)·. . .·ϕn−2(xn−2)·b)−1·x−1·(ϕ(x1)·. . .·ϕn−2(xn−2)·b)−1.

Also let Q be equipped with a topology O. Further on, let the statements

(1) and (2) hold.

Finally, by (1),(2),(6) and (7), and by Prop. 2.2, we conclude that the

(Q,A,O) is a topological n−group. 2

3.4. Remark: In [Crombez 1971] and [Žǐzović 1976], (Q,A,O) is a topo-

logical n−group, n ≥ 3, iff the following statements hold: (a) the n−ary

operation A is continuous in O, and (b) the unary operation on − (operation

”skew element”, cf. Appendix 2) is continuous in O.
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4 Three more propositions

4.1. Proposition [Ušan 1998/4]: Let (Q,A) be an n−group, e its {1, n}−neutral

operation, −1 its inverse operation, and n ≥ 3. Also, let Q be equipped with a

topology O. Further on, let the n−ary operation A be continuous in O. Then

the following statements are equivalent:

(i) the (n− 1)−ary operation −1 is continuous in O; and

(ii) the (n− 2)−ary operation e is continuous in O.

Proof. a) (i) ⇒ (ii) : By Th. 1.3 from Chapter III, we conclude that for all

an−2
1 ∈ Q the following equality holds

e(an−2
1 ) = A((an−2

1 , a1)
−1, an−2

1 , a1).

Whence, by Prop. 2.5, and by Prop. 2.6, we conclude the statement (i) ⇒
(ii) is satisfied.

b) (ii) ⇒ (i) : By Prop. 2.8 and by Prop. 2.7. 2

Similarly, it is posible to prove also the following proposition:

4.2. Proposition [Ušan 1998/4]: let (Q,A) be an n−group, e its {1, n}−ne-

utral operation, −1 its inverse operation, and n ≥ 3. Also, let a
def
= e(

n−2
a ) and

a(−2)def
= (

n−1
a )−1. Further on, let Q be equipped with a topology O, and let the

n−ary operation A be continuous in O. Then the following statements are

equivalent:

(i) the unary operation − is continuous in O; and

(ii) the unary operation (−2) is continuous in O.

4.3. Remark: In [Enders 1995],(Q,A,O) is a topological n−group, n ≥ 2,

iff the following statements hold: 1) the n−ary operation A is continuous in

O, and 2) the unary operation (−2) is continuous in O. For n = 2, a(−2) =

a−1.

4.4. Proposition [Ušan 1998/4]: Let (Q,A) be an n−group, e its {1, n}−neutral

operation, n ≥ 3, and let
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(1) a
def
= e(

n−2
a )4

for all a ∈ Q. Also, let Q be equipped a topology O. Further on, let the n−ary

operation A be continuous in O. Then the following statements are equiva-

lent:

(̂i) the (n− 2)−ary operation e is continuous in O; and

(îi) the unary operation − is continuous in O.

Proof. 1) (̂i) ⇒ îi) : By (1) and By Prop. 2.5.

2) (îi) ⇒ î) : By Prop. 2.9 and by Def. 1.1. (See, also the proof of Prop.

2.4.) 2

4See the footnote up the Proposition 2.9.
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Chapter IX

SOME MORE CHARACTERIZATIONS OF

n−GROUPS

1 n−groups as algebras of the type

< n, n− 1 > with laws

1.1. Theorem [Ušan 1994]: Let n ≥ 2 and (Q; A) be an n−semigroup.

Then, (Q,A) is an n−group iff there is a mapping −1 of the set Qn−1 into

the set Q such that the laws (4L) and (4R) from Chapter III-3 holds in the

algebra (Q, {A,−1 }).1

This result is improved in [Dudek 1995]:

1.2. Theorem [Dudek 1995]: Let (Q,A) be an n−groupoid and n ≥ 2.

Then: (Q,A) is an n−group iff there is a mapping −1 of the set Qn−1 into

the set Q such that the following laws hold in the algebra (Q, {A,−1 }) [of the

type < n, n− 1 >]

(1) A(A(xn
1 ), x2n−1

n+1 ) = A(x1, A(xn+1
2 ), x2n−1

n+2 )2,

(2) A((an−2
1 , a)−1, an−2

1 , A(a, an−2
1 , x)) = x and

(3) A(A(x, an−2
1 , a), an−2

1 , (an−2
1 , a)−1) = x.3

Proof.4 1)⇒: By Def. 1.1 from Chapter I and Theorem 1.3 from Chapter

III.
1See, also Prop. 1.1 from Chapter III.
2or: A(xn−2

1 , A(x2n−2
n−1 ), x2n−1) = A(xn−1

1 , A(x2n−1
n )).

3In Chapter III: (1) = (1L), (2) = (4L), (3) = (4R).
4[Ušan 1997/2].
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2) ⇐: Firstly we prove the following statements:

1◦ For every a, an−2
1 , x, y ∈ Q the implication

A(x, an−2
1 , a) = A(y, an−2

1 , a) ⇒ x = y

holds;

2◦ (Q,A) is an n−semigroup;

3◦ For every a, an−2
1 , x, y ∈ Q the implication

A(a, an−2
1 , x) = A(a, an−2

1 , y) ⇒ x = y

holds; and

4◦ For every an
1 ∈ Q there is exactly one x and exactly one y ∈ Q such

that the following equalities hold

A(an−1
1 , x) = an and A(y, an−1

1 ) = an.

Sketch of the proof of 1◦ :

A(x, an−2
1 , a) = A(y, an−2

1 , a) ⇒
A(A(x, an−2

1 , a), an−2
1 , (an−2

1 , a)−1) =

A(A(y, an−2
1 , a), an−2

1 , (an−2
1 , a)−1)

(3)⇒x = y.

The proof of the statement 2◦ :

By 1◦ and by Prop. 2.1 from Chapter III.

The proof of the statement 3◦ : By (2).

Sketch of the proof of 4◦ :

a) A(x, an−2
1 , a) = b

1◦⇔
A(A(x, an−2

1 , a), an−2
1 , (an−2

1 , a)−1) = A(b, an−2
1 , (an−2

1 , a)−1)
(3)⇔

x = A(b, an−2
1 , (an−2

1 , a)−1).

b) A(a, an−2
1 , x) = b

3◦⇔
A((an−2

1 , a)−1, an−2
1 , A(a, an−2

1 , x)) = A((an−2
1 a)−1, an−2

1 , b)
(2)⇔

x = A((an−2
1 , a)−1, an−2

1 , b).

Finally, by 2◦, 4◦ and by Prop.2.2 from Chapter III, we conclude that

(Q,A) is an n−group.

Remark: Similarly, it is possible to prove the case ”(1R), (4L), (4R)”. See
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footnotes 2 and 3. 2

1.3. Theorem [Ušan 1997/2]: Let (Q,A) be an n−groupoid and n ≥ 2.

Then there is at most one mapping −1 of the set Qn−1 into the set Q such

that the laws (1)-(3) from Theorem 1.2 hold in the algebra (Q, {A,−1 }) of

the type < n, n− 1 > .

Proof. Assume that there are mappings
−11 : Qn−1 → Q and −12 : Qn−1 → Q

such that the laws (1)-(3) from Theorem 1.2 hold in the algebras (Q, {A,−11 })
and (Q, {A,−12 }). Whence, by Th. 1.2, we conclude that the following state-

ment holds:

1* (Q,A) is an n−group.

Further on, by (2), we conclude that the following statement holds

2* for all a, x ∈ Q and for every sequence an−2
1 over Q the following

equalities hold

A((an−2
1 , a)−11 , an−2

1 , A(a, an−2
1 , x)) = x and

A((an−2
1 , a)−12 , an−2

1 , A(a, an−2
1 , x)) = x.

Finally, by 1*, 2* and by Def. 1.1 from Chapter I, we conclude that for all

a ∈ Q and for every sequence an−2
1 over Q the following equality holds

(an−2
1 , a)−11 = (an−2

1 , a)−12 ,

i.e., that −11 =−12 . 2

Remark: Similarly, it is possible to prove the case ”(1R), (4L), (4R)”. See

footnotes 2 and 3.

1.4. Theorem [Ušan 1997/2]: The laws (1)-(3) from Theorem 1.2 are

mutually independent.

Proof. a) The laws (1) and (2) from Th. 1.2 hold in the algebra (Q, {A,−1 })
of the type < n, n−1 >, where n ≥ 2, |Q| > 1, A(xn

1 )
def
= xn, and (an−2

1 , a)−1def
=

c−constant. However, the law (3) from Th. 1.2 does not hold.

b) The laws (1) and (3) from Th. 1.2 hold in the algebra (Q, {A,−1 }) of



IX Some more characterizations of n−groups 87

the type < n, n− 1 >, where n ≥ 2, |Q| > 1, A(xn
1 )

def
= x1, and (an−2

1 , a)−1def
=

c−constant. However, the law (2) from Th. 1.2 does not hold.

c1) The case n > 2 : Let (Q, 2) be a group, −1 its inverse operation, and

let (Q,B) be an (n−2)−groupoid which is not an (n−2)−quasigroup. Then

(Q,A), where

A(x, an−2
1 , y)

def
= x2(B(an−2

1 ))−12y,

satisfies conditions of Proposition 1.2 from Chapter III. Thus, there is an

algebra (Q, {A,−1 }) of the type < n, n − 1 >, in which the laws (2) and

(3) from Th. 1.2 hold. However, the law (1) fails to hold in (Q, {A,−1 }).
Indeed, if the law (1) from Th. 2.1 holds in (Q, {A,−1 }), then by Th. 2.1

is an n−group, which contradict the assumption that (Q,B) is not an (n−
2)−guasigroup.

c2) The case n = 2 : Let (Q,A) be a Moufang loop which is not a group,

and let −1 its inverse operation. Then the laws (2) and (3) from Th. 1.2 hold

in the algebra (Q, {A,−1 }). However, the law (1) does not hold. (Cf. [Bruck

1958] or [Belousov 1967].) 2

Remark: Similarly, it is possible to prove the case ”(1R), (4L), (4R)”.

See footnotes 2) and 3).

2 n−groups, n ≥ 3, as algebras of the type

< n, n− 2 > with laws

2.1. Theorem [Ušan 1988]: Let n ≥ 3 and let (Q,A) be an n−semigroup.

Then: (Q,A) is an n−group iff (Q,A) has an {1, n}−neutral operation.5

This result was improved in [Ušan 1997/2]:

2.2. Theorem [Ušan 1997/2]: Let (Q,A) be an n−groupoid and n ≥ 3.

Then: (Q,A) is an n−group iff there is a mapping e of the set Qn−2 into the

5See, also Th. 2.6 from Chapter II.
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set Q such that the following laws hold in the algebra (Q, {A, e}) [of the type

< n, n− 2 >]

(1) A(A(xn
1 ), x2n−1

n+1 ) = A(x1, A(xn−1
2 ), x2n−1

n+2 )6,

(2) A(e(an−2
1 ), an−2

1 , x) = x and

(3) A(x, an−2
1 , e(an−2

1 )) = x.7

Proof. 1)⇒: By Def. 1.1 from Chapter I and Th. 1.3 from Chapter III.

2) ⇐: Firstly we prove the following statements:
◦1 For every a, an−2

1 , x, y ∈ Q the implication holds

A(x, a, an−2
1 ) = A(y, a, an−2

1 ) ⇒ x = y;
◦2 (Q,A) is an n−semigroup;
◦3 For every a, an−2

1 , x, y ∈ Q the implication holds

A(an−2
1 , a, x) = A(an−2

1 , a, y) ⇒ x = y; and
◦4 For every an

1 ∈ Q there is exactly one x and exactly one y ∈ Q such that

the following equalities hold

A(an−1
1 , x) = an and A(y, an−1

1 ) = an.

Sketch of the proof of ◦1 :

A(x, a, an−2
1 ) = A(y, a, an−2

1 ) ⇒
A(A(x, a, an−2

1 ), e(an−2
1 ), cn−3

1 , e(a, cn−3
1 )) =

A(A(y, a, an−2
1 ), e(an−2

1 ), cn−3
1 , e(a, cn−3

1 ))
(1)⇒

A(x,A(a, an−2
1 , e(an−2

1 )), cn−3
1 , e(a, cn−3

1 )) =

A(y, A(a, an−2
1 , e(an−2

1 )), cn−3
1 , e(a, cn−3

1 ))
(3)⇒

A(x, a, cn−3
1 , e(a, cn−3

1 )) = A(y, a, cn−3
1 , e(a, cn−3

1 )
(3)⇒

x = y.

The proof of the statement ◦2 :

By ◦1 and by Prop. 2.1 from Chapter III.

Sketch of the proof of ◦3 :

A(an−2
1 , a, x) = A(an−2

1 , a, y) ⇒

6or: A(xn−2
1 , A(x2n−2

n−1 ), x2n−1) = A(xn−1
1 , A(x2n−1

n )).
7In Chapter III-3: (1) = (1L), (2) = (2L), (3) = (2R).
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A(e(cn−3
1 , a), cn−3

1 , e(an−2
1 ), A(an−2

1 , a, x)) =

A(e(cn−3
1 , a), cn−3

1 , e(an−2
1 ), A(an−2

1 , a, y))
◦2⇒

A(e(cn−3
1 , a), cn−3

1 , A(e(an−2
1 ), an−2

1 , a), x) =

A(e(cn−3
1 , a), cn−3

1 , A(e(an−2
1 ), an−2

1 , a), y)
(2)⇒

A(e(cn−3
1 , a), cn−3

1 , a, x) = A(e(cn−3
1 , a), cn−3

1 , a, y)
(2)⇒

x = y.

Sketch of the proof of ◦4 :

a) A(x, a, an−2
1 ) = b

◦1⇐⇒
A(A(x, a, an−2

1 ), e(an−2
1 ), cn−3

1 , e(a, cn−3
1 )) = A(b, e(an−2

1 ), cn−3
1 , e(a, cn−3

1 ))
(1),(3)⇐⇒x = A(b, e(an−2

1 ), cn−3
1 , e(a, cn−3

1 )).

b) A(an−2
1 , a, x) = b

◦3⇐⇒
A(e(cn−3

1 , a), cn−3
1 , e(an−2

1 ), A(an−2
1 , a, x)) = A(e(cn−3

1 , a), cn−3
1 , e(an−2

1 ), b)
◦2,(2)⇐⇒x = A(e(cn−3

1 , a), cn−3
1 , e(an−2

1 ), b).

c) By a) and ◦1 and by b) and ◦3, we obtain ◦4.

Finally, by ◦2, ◦4 and by Prop. 2.2 from Chapter III, we conclude that

(Q,A) is an n−group.

Remark: Similarly, it is possible to prove the case ”(1R), (2L), (2R)”. See

footnotes 6 and 7. 2

2.3. Theorem [Ušan 1997/2]: Let (Q,A) be an n−groupoid and n ≥ 3.

Then there is at most one mapping e of the set Qn−2 into the set Q such

that the laws (1) − (3) from Th. 2.2 hold in the algebra (Q, {A, e}) of the

type < n, n− 2 > .

Proof. By (2), (3), Def. 2.1 Chapter II and by Prop. 2.3 from Chapter II.

Remark: Similarly, it is possible to prove the case ”(1L), (2L), (2R)”. 2

2.4. Theorem [Ušan 1997/2]: The laws (1) − (3) from Theorem 2.2 are

mutually independent.

Proof. a) The laws (1) and (2) from Th. 2.2 hold in the algebra (Q, {A, e})
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of the type < n, n− 2 >, where n ≥ 3, |Q| > 1, A(xn
1 )

def
= xn, and e(an−2

1 )
def
=

c−constant. However, the law (3) from Th. 2.2 does not hold.

b) The laws (1) and (3) from Th. 2.2 hold in the algebra (Q, {A, e}) of

the type < n, n − 2 >, where n ≥ 3, |Q| > 1, A(xn
1 )

def
= x1, and e(an−2

1 )
def
=

c−constant. However, the law (2) from Th. 2.2 does not hold.

c) Let (Q, 2) be a group, −1 its inverse operation, n ≥ 3, and let (Q,B)

be an (n − 2)−groupoid which is not an (n − 2)−quasigroup. Then (Q,A),

where

A(x, an−2
1 , y)

def
= x2(B(an−2

1 ))−12y,

satisfies conditions of Proposition 2.5 from Chapter II. Thus, there is an

algebra (Q, {A, e}) of the type < n, n − 2 >, in which the laws (2) and (3)

from Th. 2.2 hold. Howeover, the law (1) from Th. 2.2 fails to hold in

(Q, {A, e}). Indeed, if the law (1) from Th. 2.2 hold in (Q, {A, e}) then by

Th. 2.2 is an n−group, which contradict the assumption that (Q,B) is not

an (n− 2)−quasigroup. 2

2.5. Remark: The part of Theorem 1.4 from the paper [Monk, Sioson 1971]

is the following proposition:

2.5.1. Let n ≥ 3 and let (Q,A) be an n−semigroup. Then: (Q,A) is an

n−group iff for every an−2
1 ∈ Q there is exactly one (a1, . . . , an−2)

−1 ∈ Q

such that for every x ∈ Q the following equalities hold

A(x, an−2
1 , (a1, . . . , an−2)

−1) = x, A(an−2
1 , (a1, . . . , an−2)

−1, x) = x,

A((a1, . . . , an−2)
−1, an−2

1 , x) = x, A(x, (a1, . . . , an−2)
−1, an−2

1 ) = x.

Operation −1 is a {1, n}−neutral operation of the n−semigroup (Q,A).

Moreover, in [Celakoski 1977] the following proposition was shown:

2.5.2. An n−semigroup (Q,A) is an n−group (n ≥ 3) iff there exists an

(n − 2)−ary operation −1 on Q such that for any x1, . . . , xn−2, y ∈ Q the

following hold

A(y, x1, . . . , xn−2, (x1, . . . , xn−2)
−1) = y = A((x1, . . . , xn−2)

−1, x1, . . . , xn−2, y).

In Th. 2.1 as well as in Prop. 2.5.2, the n−semigroup (Q, A), n ≥ 3,
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is followed by (n − 2)−ary operation in Q. In addition, if the fact that the

mentioned (n − 2)−ary operation in Th. 2.1 generalizes the notion of a

neutral element of a groupoid [: Chapter II-2] is omited and in Prop. 2.5.2

its denotation [: −1 ] is ignored, then we can say that they represent the same

proposition.

3 Some more propositions

Note that the following proposition has been proved in [Tvermoes 1953]:

3.1. Theorem [Post 1940 8, Tvermoes 1953]: An n−semigroup (Q,A) is

an n−group iff for each an
1 ∈ Q there exists at least one x ∈ Q and at

least one y ∈ Q such that the following equalities hold: A(an−1
1 , x) = an and

A(y, an−1
1 ) = an.

This result was improved in [Ušan 1997/3]:

3.2. Theorem [Ušan 1997/3]: Let (Q,A) be an n−groupoid and let n ≥ 2.

Then, (Q,A) is an n−group iff the following statements hold:

(i) (Q,A) is an < n− 1, n > −associative n−groupoid 9;

(ii) (Q,A) is an < 1, n > −associative n−groupoid;

(iii) For every an
1 ∈ Q there is at least one x ∈ Q such that the following

equality A(an−1
1 , x) = an holds; and

(iv) For every an
1 ∈ Q there is at least one y ∈ Q such that the following

equality A(y, an−1
1 ) = an holds.

Proof. 1) ⇒: By Def.1.1 from Chapter I.

2) ⇐: Firstly we prove the following statement:

*1 There are mappings −1 and e, respectively, of the sets Qn−1 and Qn−2

8This assertion has been already formulated in [Post 1940], but the proof is missing
there.

9or: (̂i) < 1, 2 >-associative n−groupoid.
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into the set Q such that for all a, x ∈ Q and for every sequence an−2
1 over Q

the following equalities hold

A(e(an−2
1 ), an−2

1 , x) = x and

A((an−2
1 , a)−1, an−2

1 , a) = e(an−2
1 ).

The proof of *1:

By (ii) − (iv), by Prop. 2.5 from Chapter II and by Prop. 1.2 from

Chapter III.

Finally, by (i), by *1 and by Th. 3.1 from Chapter III, we conclude that

the proposition is satisfied.

Remark: Similarly, it is possible to prove the case ”(̂i), (ii), (iv)”. See foot-

note 9. 2

3.3. Remark: A group as a semigroup and a quasigroup was characterized

by Weber H. in 1896 (cf. [Clifford, Preston 1964], p.p. 19-20). A notion of

an n−group was introduced by Dörnte W. in [Dörnte 1928] as a generaliza-

tion of Weber’s characterization of a group. A group as a semigroup (Q, ·)
in which the following formula holds

(∀a ∈ Q)(∀b ∈ Q)(∃x ∈ Q)(∃y ∈ Q)(a · x = b ∧ y · a = b)

was characterized by Hungtington E.V. in 1902 (cf. [Cliford, Preston 1964],

p.p. 20). For n ≥ 3 see also [Tyutin 1985] and [Gal’mak 2000].

3.4. Theorem [Ušan 1999/7]: Let n ≥ 3 and let (Q,A) be an n−groupoid.

Then: (Q,A) is an n−group iff there is i ∈ {2, . . . , n − 1} such that the

following statements hold:

(a) The < i− 1, i > −associative law holds in (Q,A);

(b) The < i, i + 1 > −associative law holds in (Q,A); and

(c) For every an
1 ∈ Q there is exactly one x ∈ Q such that the following

equality holds A(ai−1
1 , x, an−1

i ) = an.

Remark: (c) ⇔ (c1) ∧ (c2), where

(c1) For every an−1
1 , x, y ∈ Q the implication holds

A(ai−1
1 , x, an−1

i ) = A(ai−1
1 , y, an−1

i ) ⇒ x = y; and
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(c2) For every an
1 ∈ Q there is at least one x ∈ Q such that the

following equality holds A(ai−1
1 , x, an−1

i ) = an.

Proof. 1) ⇒: By Def. 1.1 from Chapter I.

2) ⇐: Firstly we prove the following statements:
◦
1 (Q,A) is an n−semigroup;
◦
2 For every an

1 ∈ Q there is at least one x ∈ Q such that the following

equality holds A(an−1
1 , x) = an; and

◦
3 For every an

1 ∈ Q there is at least one y ∈ Q such that the following

equality holds A(y, an−1
1 ) = an.

Sketch of the proof of
◦
1:

a)i ≤ j ≤ n− 2 :

A(aj−1
1 , A(aj+n−1

j ), a2n−1
j+n ) = A(aj

1, A(aj+n
j+1 ), a2n−1

j+n+1) ⇒
A(bi

1, A(aj−1
1 , A(aj+n−1

j ), a2n−1
j+n ), bn−1

i+1 ) =

A(bi
1, A(aj

1, A(aj+n
j+1 ), a2n−1

j+n+1), b
n−1
i+1 )

(b)⇒
A(bi−1

1 , A(bi, a
j−1
1 , A(aj+n−1

j ), a2n−2
j+n ), a2n−1, b

n−1
i+1 ) =

A(bi−1
1 , A(bi, a

j
1, A(aj+n

j+1 ), a2n−2
j+n+1), a2n−1, b

n−1
i+1 )

(c1)⇒
A(bi, a

j−1
1 , A(aj+n−1

j ), a2n−2
j+n ) = A(bi, a

j
1, A(aj+n

j+1 ), a2n−2
j+n+1).

b) 2 ≤ k ≤ i− 1 :

A(ak−1
1 , A(ak+n−1

k ), a2n−1
k+n ) = A(ak

1, A(ak+n
k+1 ), a2n−1

k+n+1) ⇒
A(bi−2

1 , A(ak−1
1 , A(ak+n−1

k ), a2n−1
k+n ), bn−1

i−1 ) =

A(bi−2
1 , A(ak

1, A(ak+n
k+1 ), a2n−1

k+n+1), b
n−1
i−1 )

(a)⇒
A(bi−2

1 , a1, A(ak−1
2 , A(ak+n−1

k ), a2n−1
k+n , bi−1), b

n−1
i ) =

A(bi−2
1 , a1, A(ak

2, A(ak+n
k+1 ), a2n−1

k+n+1, bi−1), b
n−1
i )

(c1)⇒
A(ak−1

2 , A(ak+n−1
k ), a2n−1

k+n , bi−1) = A(ak
2, A(ak+n

k+1 ), a2n−1
k+n+1, bi−1).

See, also the prof of Prop. 2.1 from Chapter III.

For n = 3[i = 2] the statements (a) and (b) are equivalent to the state-

ment that (Q, A) is a 3-semigroup.

Sketch of the proof of
◦
2:
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A(an−1
1 , x) = an

(c1)⇔
A(bi−1

1 , A(an−1
1 , x), bn−1

i ) = A(bi−1
1 , an, b

n−1
1 )

◦
1⇔

A(bi−2
1 , A(bi−1, a

n−1
1 ), x, bn−1

i ) = A(bi−1
1 , an, bn−1

1 ),

i.e. that

A(an−1
1 , x) = an ⇔

A(bi−2
1 , A(bi−1, a

n−1
1 ), x, bn−1

i ) = A(bi−1
1 , an, bn−1

1 ),

where bn−1
1 is an arbitrary sequence over Q.

Whence, by (c), we conclude that the statement
◦
2 holds.

Similarly, it is possible to prove the statement
◦
3.

Finally, by
◦
1− ◦

3 and by Th. 3.1 (3.2), we conclude that the proposition

is satisfied. 2

3.5. Remark: A part of 1.4 in [Monk, Sioson 1971] is the following propo-

sition. Let n ≥ 3 and let (Q,A) be an n−semigroup. Then (Q, A) is an

n−group iff for some i ∈ {2, . . . , n− 1} and for every an
1 ∈ Q there is exactly

one x ∈ Q such that the following equality holds A(ai−1
1 , x, an−1

i ) = an. See,

also [Tyutin 1985].
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Chapter X

CENTRAL OPERATIONS ON n−GROUPS

1 Notion and main propositions

1.1. Definition [Ušan 2001/1]: Let (Q,A) be an n−group and n ≥ 2. Also,

let α be an (n− 2)−ary operation in the set Q. We say that α is a central

operation of the n−group (Q,A) iff for every sequence an−2
1 over Q, for

every sequence bn−2
1 over Q and for every x ∈ Q the following equality holds

(1) A(α(an−2
1 ), an−2

1 , x) = A(x, α(bn−2
1 ), bn−2

1 ).

1.2. Remarks: a) If n = 2, then α(cn−2
1 )[ = α(c◦1) = α(∅) = c ∈ Q]

is a central element of the group (Q,A); and b) The {1, n}−neutral

operation e of the n−group (Q,A) is a central operation of that n−group (cf.

Proposition 1.1 from Chapter IV).

1.3. Proposition [Ušan 2001/1]: Let (Q,A) be an n−group and n ≥ 2.

Also, let α be a central operation of the n−group (Q,A). Then for every

i ∈ {1, . . . , n}, for every xn
1 ∈ Q, for every sequence an−2

1 over Q and for

every sequence bn−2
1 over Q the following equality holds

(a) A(α(an−2
1 ), an−2

1 , A(xn
1 )) = A(xi−1

1 , A(α(bn−2
1 ), bn−2

1 , xi), x
n
i+1).

Proof. 1) n = 2 : For n = 2 α(cn−2
1 )[= α(∅)] is an element of the center of

the group (Q,A).

2) n ≥ 3 : a) Since, by the assumption, (Q,A) is an n−group, we

conclude that for every xn
1 ∈ Q, for every sequence an−2

1 over Q and for every

sequence bn−2
1 over Q the following equalities hold

A(α(an−2
1 ), an−2

1 , A(xn
1 )) = A(A(α(an−2

1 ), an−2
1 , x1), x

n
2 )

= A(A(α(bn−2
1 ), bn−2

1 , x1), x
n
2 ).

b) Since, by the assumption, (Q,A) is an n−group and α its central
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operation, we conclude that for every j ∈ {1, . . . , n−1}, for every xn
1 ∈ Q, for

every sequence an−2
1 over Q and for every sequence bn−2

1 over Q the following

equalities hold

A(xj−1
1 , A(α(an−2

1 ), an−2
1 , xj), x

n
j+1)

(1)
=A(xj−1

1 , A(xj,α(bn−2
1 ), bn−2

1 ), xn
j+1)

= A(xj
1, A(α(bn−2

1 ), bn−2
1 , xj+1), x

n
j+2).

2

1.4. Proposition [Ušan 2001/1]: Let (Q,A) be an n−group and n ≥ 2.

Also, let α be an (n− 2)−ary operation in the set Q. Further on, let for all

x ∈ Q, for every sequence an−2
1 over Q and for every sequence bn−2

1 over Q

the following equality holds

(2) A(x, an−2
1 ,α(an−2

1 )) = A(bn−2
1 ,α(bn−2

1 ), x).

Then for every i ∈ {1, . . . , n}, for every xn
1 ∈ Q, for every sequence an−2

1 over

Q and for every sequence bn−2
1 over Q the following equality holds

(b) A(A(xn
1 ), an−2

1 , α(an−2
1 )) = A(xi−1

1 , A(xi, b
n−2
1 ,α(bn−2

1 )), xn
i+1).

Sketch of the proof. 1) n = 2 : For n = 2 α(cn−2
1 [= α(∅)] is an element of

the center of the group (Q,A).

2) n ≥ 3 :

a) A(A(xn
1 ), an−2

1 ,α(an−2
1 )) = A(xn−1

1 , A(xn, a
n−2
1 ,α(an−2

1 )))
= A(xn−1

1 , A(xn, b
n−2
1 , α(bn−2

1 ))).

b) A(xj
1, A(xj+1, a

n−2
1 ,α(an−2

1 )), xn
j+2)

(2)
=A(xj

1, A(bn−2
1 ,α(bn−2

1 ), xj+1), x
n
j+2)

= A(xj−1
1 , A(xj, b

n−2
1 ,α(bn−2

1 )), xn
j+1).

2

1.5. Proposition [Ušan 2001/1]: Let n ≥ 2, (Q,A) be an n−group and

α its central operation. Then, for every sequence an−2
1 over Q, for every

sequence bn−2
1 over Q, for every sequence cn−2

1 over Q, for every sequence

dn−2
1 over Q and for every x ∈ Q the following equalities hold

(3) A(α(an−2
1 ), an−2

1 , x) = A(x, bn−2
1 ,α(bn−2

1 )) and

(4) A(x, α(cn−2
1 ), cn−2

1 ) = A(dn−2
1 ,α(dn−2

1 ), x).

Proof. 1) n = 2 : For n = 2 the proposition is trivial.

2) n ≥ 3 :
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Sketch of the proof of (3) :

F (an−2
1 , x)

def
= A(x, an−2

1 ,α(an−2
1 )) ⇒

A(F (an−2
1 , x), an−2

1 , z) = A(A(x, an−2
1 ,α(an−2

1 )), an−2
1 , z) ⇒

A(F (an−2
1 , x), an−2

1 , z) = A(x, an−2
1 , A(α(an−2

1 ), an−2
1 , z))

1.3⇒
A(F (an−2

1 , x), an−2
1 , z) = A(A(α(bn−2

1 ), bn−2
1 , x), an−2

1 , z) ⇒
F (an−2

1 , x) = A(α(bn−2
1 ), bn−2

1 , x).

Sketch of the proof of (4) :

Φ(an−2
1 , x)

def⇒A(an−2
1 , α(an−2

1 ), x) ⇒
A(an−2

1 , z,Φ(an−2
1 , x)) = A(an−2

1 , z, A(an−2
1 ,α(an−2

1 ), x)) ⇒
A(an−2

1 , z,Φ(an−2
1 , x)) = A(an−2

1 , A(z, an−2
1 ,α(an−2

1 )), x)
(3)⇒

A(an−2
1 , z,Φ(an−2

1 , x)) = A(an−2
1 , A(α(bn−2

1 ), bn−2
1 , z), x)

1.3⇒
A(an−2

1 , z,Φ(an−2
1 , x)) = A(an−2

1 , z, A(α(bn−2
1 ), bn−2

1 , x))
(1)⇒

A(an−2
1 , z,Φ(an−2

1 , x)) = A(an−2
1 , z, A(x, α(bn−2

1 ), bn−2
1 )) ⇒

Φ(an−2
1 , x) = A(x, α(bn−2

1 ), bn−2
1 ). 2

Similarly, it is possible to prove that the following proposition holds:

1.6. Proposition [Ušan 2001/1]: Let (Q,A) be an n−group and n ≥ 2.

Also, let α be an (n− 2)−ary operation in the set Q. Further on, let for all

x ∈ Q, for every sequence an−2
1 over Q, and for every sequence bn−2

1 over

Q the equality (2) holds. Then, for every sequence an−2
1 over Q, for every

sequence bn−2
1 over Q, for every sequence cn−2

1 over Q, for every sequence

dn−2
1 over Q and for every x ∈ Q the equalities (3) and (4) hold.

Sketch of a part of the proof.

F (an−2
1 , x)

def
= A(α(an−2

1 ), an−2
1 , x) ⇒
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A(z, an−2
1 , F (an−2

1 , x)) = A(z, an−2
1 , A(α(an−2

1 ), an−2
1 , x)) ⇒

A(z, an−2
1 , F (an−2

1 , x)) = A(A(z, an−2
1 ,α(an−2

1 )), an−2
1 , x)

1.4⇒
A(z, an−2

1 , F (an−2
1 , x)) = A(z, an−2

1 , A(x, bn−2
1 , α(bn−2

1 ))) ⇒
F (an−2

1 , x) = A(x, bn−2
1 ,α(bn−2

1 )). 2

1.7. Theorem [Ušan 2001/1]: Let (Q,A) be an n−group and n ≥ 2. Also,

let α be an (n−2)−ary operation in the set Q. Then the following statements

are equivalent:

(i) α is a central operation of the n−group (Q,A); and

(ii) For all x ∈ Q, for every sequence an−2
1 over Q, and for every sequence

bn−2
1 over Q the equality (2) holds.

Sketch of the proof.

1) (i) ⇒ (ii) :

By Proposition 1.5:

A(α(an−2
1 ), an−2

1 , x) = A(x, bn−2
1 , α(bn−2

1 ))

‖
A(x, α(cn−2

1 ), cn−2
1 ) = A(dn−2

1 , α(dn−2
1 ), x).

2) (ii) ⇒ (i) :

By Proposition 1.6:

A(α(an−2
1 ), an−2

1 , x) = A(x, bn−2
1 , α(bn−2

1 ))

‖
A(x, α(cn−2

1 ), cn−2
1 ) = A(dn−2

1 , α(dn−2
1 ), x). 2

A direct consequence of Proposition 1.5 [:(3)] is the following proposition:

1.8. Proposition: Let (Q,A) be an n−group and n ≥ 2. Also, let α and

β be central operations of the n−group (Q, A). Then for every sequence an−2
1

over Q, the following equality holds

A(α(an−2
1 ), an−2

1 ,β(an−2
1 )) = A(β(an−2

1 ), an−2
1 ,α(an−2

1 )).

1.9. Theorem [Ušan 2001/1]: Let (Q,A) be an n−group, α its central
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operation and n ≥ 2. Then there is a permutation α of the set Q such that

for every x ∈ Q, for every sequence an−2
1 over Q and for every sequence bn−2

1

over Q the following conjuction of equalities holds

(5) A(α(an−2
1 ), an−2

1 , x) = α(x) ∧ A(x, α(bn−2
1 ), bn−2

1 ) = α(x).

Proof. Let kn−2
1 be an arbitrary chosen sequence over the set Q. Then, α

defined by

α(x)
def
= A(x, α(kn−2

1 ), kn−2
1 )

for every x ∈ Q, is a permutation of the set Q, since (Q,A) is an n−quasigroup.

Hence, by Def. 1.1, we conclude that the proposition holds. (For n = 2 :

α(kn−2
1 ) = α(∅) ∈ Q.) 2

1.10. Definition Let (Q,A) be an n−group, α its central operation and

n ≥ 2. Also, let α be a permutation of the set Q. We shall say that α is

associated to α iff for all x ∈ Q and for every sequence an−2
1 over Q the

following equality holds

α(x) = A(α(an−2
1 ), an−2

1 , x).

1.11. Theorem [Ušan 2001/1]: Let (Q,A) be an n−group, α its central

operation and n ≥ 2. Also, let α be associated to α. Then for every i ∈
{1, . . . , n} and for every xn

1 ∈ Q the following equality holds:

αA(xn
1 ) = A(xi−1

1 α(xi), x
n
i+1).

Proof. By Prop. 1.3, Theorem 1.9 and Def. 1.10. 2

1.12. Theorem [Ušan 2001/1]: Let (Q, A) be an n−group, α[ β] its central

operation and n ≥ 2. Also, let α[ β] be associated to α[ β]. Then for every

x ∈ Q the following equality holds

α(β(x)) = β(α(x)).

Sketch of the proof.
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α(β(x))
1.11
= A(α(an−2

1 ), an−2
1 , β(x))

1.11
= A(α(an−2

1 ), an−2
1 , A(β(an−2

1 ), an−2
1 , x))

= A(A(α(an−2
1 ), an−2

1 , β(an−2
1 )), an−2

1 , x)
1.8
=A(A(β(an−2

1 ), an−2
1 ,α(an−2

1 )), an−2
1 , x)

= A(β(an−2
1 ), an−2

1 , A(α(an−2
1 ), an−2

1 , x))
= A(β(an−2

1 ), an−2
1 , α(x))

= β(α(x)). 2

1.13. Theorem [Ušan 2001/1]: Let (Q,A) be an n−group, α its central

operation, −1 its inverse operation (cf. 1.3. from Chapter III) and n ≥ 2.

Also, let α be associated to α, and let for all x ∈ Q and for every sequence

an−2
1 over Q the following equality holds

(a) (an−2
1 ,α(an−2

1 ))−1 = α(an−2
1 ).

Then, for all x ∈ Q the following equality holds:

α(α(x)) = x.

Sketch of the proof.

α(α(x))
1.10
= A(α(an−2

1 ), an−2
1 , A(α(an−2

1 ), an−2
1 , x))

= A(A(α(an−2
1 ), an−2

1 , α(an−2
1 )), an−2

1 , x)
(a)
=A(A((an−2

1 , α(an−2
1 ))−1, an−2

1 ,α(an−2
1 )), an−2

1 , x)
1.3 III

==A(e(an−2
1 ), an−2

1 , x)
1.3 III

==x.

(1.3 III: Theorem 1.3 from Chapter III.) 2

1.14. Examples: Let ({1, 2, 3, 4}, ·) be the
Klein group: [Tab. 1] and −1 the correspond-
ing inverse operation. Further on, let ϕ be
the permutation of the set {1, 2, 3, 4} defined
in the following way

ϕ
def
=

(
1 2 3 4
1 2 4 3

)
.

· 1 2 3 4
1 1 2 3 4
2 2 1 4 3
3 3 4 1 2
4 4 3 2 1

Tab. 1
Then, ϕ ∈ Aut(Q, ·), (∀x ∈ {1, 2, 3, 4}ϕ2(x) = x, ϕ(2) = 2 and ϕ(1) = 1.

1.14a Example: Let A(x3
1)

def
= x1 · ϕ(x2) · x3 · 2 and α(c)

def
= 3 · (ϕ(c))−1 for

every x3
1, c ∈ {1, 2, 3, 4}. Then: (i) ({1, 2, 3, 4}, A) is a 3-group [cf. 1.4 from

Chapter I]; and (ii) for every c ∈ {1, 2, 3, 4} the following equalities hold
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A(α(c), c, x) = 4x, A(x, c, α(c)) = 4x and A(x, α(c), c) = 3x [cf. Prop.

1.5].

1.14b Example: Let B(x3
1)

def
= x1 · ϕ(x2) · x3 and β(c)

def
= 2 · (ϕ(c))−1 for

every x3
1, c ∈ {1, 2, 3, 4}. Then: (a) ({1, 2, 3, 4}, B) is a 3-group; and (b)

for every c ∈ {1, 2, 3, 4} the following equalities hold B(β(c), c, x) = 2x and

B(x, β(c), c) = 2x. 2

2 A description of central operations in terms

of Hosszú - Gluskin algebras

2.1 Lemma [Ušan 2001/1]: Let (Q,A) be an n−group, n ≥ 3, and let

(Q, {·, ϕ, b}) be an nHG−algebra associated to the n−group (Q, A). Also, let

α be a central operation on the n−group (Q,A). Then there is exactly one

constant a ∈ Q such that for every sequence an−2
1 over Q, the equality

α(an−2
1 ) · ϕ(a1) · . . . · ϕn−2(an−2) = a

holds.

Proof. Let cn−2
1 be an arbitrary [fixed], sequence over Q. Then, by 1.9, for

every x ∈ Q and for every sequence an−2
1 over Q the equality

A(α(an−2
1 ), an−2

1 , x) = A(α(cn−2
1 ), cn−2

1 , x)

holds, from which, by Hosszú - Gluskin Theorem [Chapter IV ], we conclude

that for every x ∈ Q and for every sequence an−2
1 overQ the equality

α(an−2
1 ) ·ϕ(a1) · . . . ·ϕn−2(an−2) ·b ·x = α(cn−2

1 ) ·ϕ(c1) · . . . ·ϕn−2(cn−2) ·b ·x
holds, i.e.,

α(an−2
1 ) · ϕ(a1) · . . . · ϕn−2(an−2) = α(cn−2

1 ) · ϕ(c1) · . . . · ϕn−2(cn−2)

holds. Hence, since by the assumption, cn−2
1 is a fixed sequence over Q, by

the convention the constant α(cn−2
1 ) ·ϕ(c1) · . . . ·ϕn−2(cn−2) is denoted by a,

we conclude that for every sequence an−2
1 over Q the following equality holds

α(an−2
1 ) · ϕ(a1) · . . . · ϕn−2(an−2) = a. 2

2.2. Theorem [Ušan 2001/1]: Let n ≥ 3, (Q,A) an n−group, (Q, {·, ϕ, b})
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its associated nHG−algebra [Chapter IV ], and −1 the inverse operation in

the group (Q, ·). Also, let α be a central operation of the n−group (Q, A) and

let the permutation α be associated to α. Then there is exactly one constant

a ∈ Q such that for every x ∈ Q and for every sequence an−2
1 over Q the

following equalities hold

(1) α(an−2
1 ) = a · (ϕ(a1) · . . . · ϕn−2(an−2))

−1,

(2) α(x) = (a · b) · x,

(3) ϕ(a) = a and

(4) (a · b) · x = x · (a · b).
Proof. 1) Since (Q, ·) is a group and −1 its inverse operation, by Lemma

2.1, we conclude that there is exactly one constant a ∈ Q such that for every

sequence an−2
1 over Q the equality (1) holds.

2) By the assumption of proposition, by Hosszú - Gluskin Theorem [Chapter

IV ], we conclude that for every x ∈ Q and for every an−2
1 over Q the equality

α(x) = α(an−2
1 ) · ϕ(a1) · . . . · ϕn−2(an−2) · b · x

holds, and from there, by Lemma 2.1, we conclude that there is exactly one

constant a ∈ Q such that for every x ∈ Q equality (2) holds.

3) Considering Def.1.1, Hosszú - Gluskin Theorem and by the fact ϕ ∈
Aut(Q, ·) [Chapter IV ], we conclude that for every x ∈ Q, for every se-

quence an−2
1 over Q and for every sequence bn−2

1 over Q the equality

α(an−2
1 ) ·ϕ(a1) · . . . ·ϕn−2(an−2) · b ·x = x ·ϕ(α(bn−2

1 ) ·ϕ(b1) · . . . ·ϕn−2(bn−2) · b
holds, and from there, by Lemma 2.1, we conclude that there is exactly one

constant a ∈ Q such that for every x ∈ Q the equality

(4) a · b · x = x · ϕ(a) · b
holds. Putting x = e in (4), where e is a neutral element of the group (Q, ·),
we obtain (3).

4) Putting (3) in (4) we obtain (4). 2

2.3. Theorem [Ušan 2001/1]: Let n ≥ 3, (Q,A) an n−group, (Q, {·, ϕ, b})
its associated nHG−algebra [Chapter IV ], −1 the inverse operation in the
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group (Q, ·) and e the neutral operation of the group (Q, ·). Also, let α be a

central operation of the n−group (Q,A) and let the permutation α be associ-

ated to α. Further on, let for every sequence an−2
1 the following equality holds

(an−2
1 ,α(an−2

1 ))−1 = α(an−2
1 ),

where −1 is an inverse operation in the n−group (Q,A). Then there is exactly

one constant a ∈ Q such that for all x ∈ Q the following equality holds

(5) (a · b) · (a · b) = e.

Sketch of the proof.

(an−2
1 , α(an−2

1 ))−1 = α(an−2
1 )

1.3III
=⇒

A(α(an−2
1 ), an−2

1 ,α(an−2
1 )) = e(an−2

1 )
4.2IV
=⇒

α(an−2
1 ) ·ϕ(a1) · . . . ·ϕn−2(an−2) ·b ·α(an−2

1 ) = (ϕ(a1) · . . . ·ϕn−2(an−2) ·b)−1 ⇒
(α(an−2

1 )·ϕ(a1)·. . .·ϕn−2(an−2))·b·(α(an−2
1 )·ϕ(a1)·. . .·ϕn−2(an−2))·b = e

2.1
=⇒

(a · b) · (a · b) = e. 2

2.4. Theorem [Ušan 2001/1]: Let n ≥ 3, (Q,A) be n−group, (Q, {·, ϕ, b})
its associated nHG−algebra and −1 the inverse operation in the group (Q, ·).
Also, let a be a fixed element of the set Q such that for all x ∈ Q the following

equalities hold

(a) (a · b) · x = x · (a · b) and

(b) ϕ(a) = a.

Further on, let

(c) α(an−2
1 )

def
= a · (ϕ(a1) · . . . · ϕn−2(an−2))

−1

for every sequence an−2
1 over Q. Then α is a central operation on the n−group

(Q,A).

Sketch of the proof.

A(α(an−2
1 ), an−2

1 , x)
3.1IV
= α(an−2

1 ) · ϕ(a1) · . . . · ϕn−2(an−2) · b · x
(c)
=a · (ϕ(an−2

1 ) · . . . · ϕn−2(an−2))
−1 · ϕ(a1) · . . . · ϕn−2(an−2) · b · x,

= a · b · x,

A(x, α(bn−2
1 ), bn−2

1 )
3.1IV
= x · ϕ(α(bn−2

1 )) · ϕ(ϕ(b1) · . . . · ϕn−2(bn−2)) · b
(c)
=x ·ϕ(a · (ϕ(b1) · . . . ·ϕn−2(bn−2))

−1) ·ϕ(ϕ(b1) · . . . ·ϕn−2(bn−2)) · b
2IV
= x·ϕ(a)·ϕ((ϕ(b1)·. . .·ϕn−2(bn−2))

−1)·ϕ(ϕ(b1)·. . .·ϕn−2(bn−2))·b
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(b)
=x · a · b
(a)
=a · b · x. 2

2.5. Theorem [Ušan 2001/1]: Let n ≥ 3, (Q,A) be an n−group, (Q, {·, ϕ, b})
its associated nHG−algebra, −1 the inverse operation in the group (Q, ·) and

e the neutral element of the group (Q, ·). Also, let a be a fixed element of the

set Q such that for all x ∈ Q the following equalities hold

(i) (a · b) · x = x · (a · b),
(ii) ϕ(a) = a and

(iii) (a · b) · (a · b) = e.

Further on, let

(iv) α(an−2
1 )

def
= a · (ϕ(a1) · . . . · ϕn−2(an−2))

−1

for every sequence an−2
1 over Q. Then: 1◦ α is a central operation on the

n−group (Q,A); and 2◦ for every sequence an−2
1 over Q the following equality

holds

(an−2
1 ,α(an−2

1 ))−1 = α(an−2
1 ),

where −1 is an inverse operation in the n−group (Q,A).

Proof. The proof of 1◦ : The proof of Th. 2.4.

Sketch of the proof of 2◦ :

1) By Th. 3.1 from Chapter III and by Prop. 4.2 from Chapter IV, we

conclude that for all x, an−2
1 ∈ Q the following equality holds

(v) (an−2
1 , x)−1 = (ϕ(a1)·. . .·ϕn−2(an−2)·b)−1 ·x−1 ·(ϕ(a1)·. . .·ϕn−2(an−2)·b)−1

2) (an−2
1 ,α(an−2

1 ))−1

(v)
=(ϕ(a1) · . . . · ϕn−2(an−2) · b)−1(α(an−2

1 ))−1 · (ϕ(a1) · . . . · ϕn−2(an−2) · b)−1

= ((ϕ(a1) · . . . · ϕn−2(an−2) · b) ·α(an−2
1 ) · (ϕ(a1) · . . . · ϕn−2(an−2) · b))−1

(iv)
= ((ϕ(a1) · . . . · ϕn−2(an−2) · b) · a · (ϕ(a1) · . . . · ϕn−2(an−2))

−1 · (ϕ(a1) · . . . ·
ϕn−2(an−2) · b))−1

= ((ϕ(a1) · . . . · ϕn−2(an−2) · b · a · b))−1

= b−1 · a−1 · b−1 · (ϕ(a1) · . . . · ϕn−2(an−2))
−1

= b−1 · a−1 · b−1 · a−1 · a · (ϕ(a1) · . . . · ϕn−2(an−2))
−1
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(iv)
= (a · b)−1 · (a · b)−1 ·α(an−2

1 )

= ((a · b) · (a · b))−1 ·α(an−2
1 )

(iii)
= α(an−2

1 ). 2
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Chapter XI

SUPER–ASSOCIATIVE ALGEBRAS WITH

n−QUASIGROUP OPERATIONS

1 Introduction

Let x1, . . . , x2n−1 be subject symbols, n ∈ N\{1}, and let X1, X2, X2i−1, X2i,

i ∈ {2, . . . , n} be n−ary operational symbols. Then, we say that

(1) X1(X2(x
n
1 ), x2n−1

n+1 ) = X2i−1(x
i−1
1 , X2i(x

i+n−1
i ), x2n−1

i+n )

is a general < 1, i > −associative law.

Some of operational symbols in (1) can be equal. In the case all of them

are mutually equal, the (ordinary) < 1, i > − associative law is in question.

For example, each of the following laws is a general < 1, 2 > −associative

(associative) laws:

(a) X1(X2(x, y), z) = X2(x, X1(y, z)),

(b) X1(X2(x, y), z) = X1(x,X2(y, z)) and

(c) X1(X1(x, y), z) = X2(x,X2(y, z)).

1.1. Definition [Ušan 2001/1] Let (Q,
∑

) be an algebra in which the

following holds: (Q, Z) is an n−quasigroup for every Z ∈ ∑
. Also let

n ≥ 2 and |∑ | ≥ 2. Further on, let x1, . . . , x2n−1 be subject symbols, let

X1, X2, X2i−1, X2i, i ∈ {2, . . . , n}, be n−ary operational symbols, and let for

all i ∈ {2, . . . , n} is |{X1, X2, X2i−1, X2i}| ≥ 2. Then, we say that (Q,
∑

) is

a super-associative algebra with n−quasigroup operations (briefly:

SAAnQ) iff for every substitution of the subject symbols x1, . . . , x2n−1 in (1)

by elements x1, . . . , x2n−1 of Q and for every substitution of the operational

symbols X1, X2, X2i−1, X2i, i ∈ {2, . . . , n}, in (1) by elements
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X1, X2, X2i−1, X2i, i ∈ {2, . . . , n}, of
∑

for all i ∈ {2, . . . , n} the following

equality holds:

(1) X1(X2(x
n
1 ), x2n−1

n+1 ) = X2i−1(x
i−1
1 , X2i(x

i+n−1
i ), x2n−1

i+n ).

(In [Ušan 2001/1]: nontrivial super associative algebra with n−quasigroup

operations. See, also [Belousov 1965], p.86.)

A immediate consequence of Def.1.1 and Def.1.1 from Chapter I, is the

following proposition:

1.2. Proposition If (Q,
∑

) is a SAAnQ, n ∈ N\{1}, then (Q, Z) is an

n−group for every Z ∈ ∑
.

Case n = 2 is described in [Belousov 1965].

1.3. Theorem [Belousov 1965]: Let (Q,
∑

) be a SAA2Q, and let · be an

arbitrary element of
∑

. Then the following statements hold:

(i) (Q,Z) is an group for every Z ∈ ∑
;

(ii)|{X1, X2, X3, X4}| = 2 and (1) = (a) or (1) = (b) or (1) = (c);

(iii) For every A ∈ ∑
there is exactly one a ∈ Q such that for every

x, y ∈ Q the equality

A(x, y) = x · a · y
holds;

(iv) If (1) = (b), then a ∈ C (a from (iii)), where C is the center of

the group (Q, ·);
(v) If (1) = (c), then a ∈ C and a−1 = a (a from (iii)), where C is the

center of the group (Q, {·,−1 }); and

(vi) If (1) = (a) and (1) 6= (b), then a ∈ Q\C (a from (iii)), where C

is the center of the group (Q, ·).

1.4. Remarks: a) Case n = 3 Yu. Movsisyan was described in 1984 (cf.

[Movsisyan 1986]). b) Case n ≥ 3 was described in [Ušan 2001/1].
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2 The types of SAAnQ

2.1. Theorem: Let (Q,
∑

) be an SAAnQ and n ∈ N\{1}. Then the

following statements hold:

1◦ X1 6= X2 ⇒ {X2i−1, X2i} = {X1, X2} and

2◦ X1 = X2 ⇒ X2i−1 = X2i

for all i ∈ {2, . . . , n}, where X1, X2, X2i−1, X2i from 1.1-(1).

Proof. 1) Case X1 6= X2.

a) Let A,B,C,D, D be arbitrary operations from
∑

, a1, . . . , a2n−1 arbi-

trary elements from Q and i an arbitrary element of the set {2, . . . , n} so

that

A(B(an
1 ), a2n−1

n+1 ) = C(ai−1
1 , D(ai+n−1

i ), a2n−1
i+n ) and

A(B(an
1 ), a2n+1

n+1 ) = C(ai−1
1 , D(ai+n−1

i ), a2n−1
i+n ).

Since
∑

is a set of n−quasigroup operations, we conclude that D = D, i.e.

that X2i from 2.1−(1) has no free choice for the substitution with operations

from the set
∑

. Similarly, we conclude that X2i−1 from 2.1− (1) has no free

choice for the substitution with operations from the set
∑

. Hence, for every

i ∈ {2, . . . , n} it is true that

|{X1, X2, X2i−1, X2i}| < 4.

b) Let A,B, C, C be arbitrary elements from the set
∑

, a1, . . . , a2n−1 ar-

bitrary elements from the set Q and i an arbitrary element from the set

{2, . . . , n} so that

A(B(an
1 ), a2n−1

n+1 ) = A(ai−1
1 , C(ai+n−1

i ), a2n−1
i+n ) and

A(B(an
1 ), a2n−1

n+1 ) = A(ai−1
1 , C(ai+n−1

i ), a2n−1
i+n ); or

A(B(an
1 ), a2n−1

n+1 ) = C(ai−1
1 , B(ai+n−1

i ), a2n−1
i+n ) and

A(B(an
1 ), a2n−1

n+1 ) = C(ai−1
1 , B(ai+n−1

i ), a2n−1
i+n ).

Hence, since
∑

is a set of n−quasigroup operations, we conclude that with

X1 = X2i−1 or X2 = X2i

|{X1, X2, X2i−1, X2i}| < 3

for every i ∈ {2, . . . , n}. In the same way we conclude that with X1 = X2i or
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X2 = X2i−1 it is true that

|{X1, X2, X2i−1, X2i}| < 3

for every i ∈ {2, . . . , n}.
c) Let A, B be arbitrary elements of the set

∑
, x1, . . . , x2n−1 arbitrary

elements from Q, and i an arbitrary element of the set {2, . . . , n} so that

A(B(an
1 ), a2n−1

n+1 ) = A(ai−1
1 , A(ai+n−1

i ), a2n−1
i+n ) or

A(B(an
1 ), a2n−1

n+1 ) = B(ai−1
1 , B(ai+n−1

i ), a2n−1
i+n )

(cf. b)). Hence, since (Q,A) and (Q,B) are n−groups (Prop. 2.3), it follows

that A = B, i.e. that X1 or X2 from 2.1-(1) has no free choice for the substi-

tution with operations from
∑

, which is a contradiction with the assumption

that the following equality holds |{X1, X2}| = 2.

2) Case X1 = X2.

Let A,B, C, C be arbitrary elements from
∑

, a1, . . . , a2n−1 arbitrary ele-

ments from Q, and i an arbitrary element of the set {2, . . . , n} so that

A(A(an
1 ), a2n−1

n+1 ) = B(ai−1
1 , C(ai+n−1

i ), a2n−1
i+n ) and

A(A(an
1 ), a2n−1

n+1 ) = B(ai−1
1 , C(ai+n−1

i ), a2n−1
i+n ).

Hence, since
∑

is a set of n−quasigroup operations, we conclude that X2i

from 2.1-(1) has no free choice for the substitutions with operations in
∑

.

Similarly, we conclude that X2i−1 from 2.1-(1) also has no free choice for the

substitution with operations from
∑

. Thus, for every i ∈ {2, . . . , n}, it is

true that

|{X2i−1, X2i}| = 1. 2

2.2. Definition: We will say that a SAAnQ has type XY (XX) iff 1◦(2◦)

of Theorem 2.1 holds.

(In [Ušan 2001/1] types XX and XY are denoted differently.)
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3 A description of an SAAnQ of the type XX

3.1. Theorem [Ušan 2001/1]: Let (Q,
∑

) be an SAAnQ of the type XX

and let n ≥ 3. Also, let A be an arbitrary operation from
∑

[cf. Prop. 1.2].

Then, for all B ∈ ∑
there is a central operation α of the n−group (Q,A)

such that for every xn
1 ∈ Q and for every sequence an−2

1 over Q the following

equalities hold:

B(xn
1 ) = A(xn−1

1 , A(α(an−2
1 ), an−2

1 , xn)) and

(an−2
1 ,α(an−2

1 ))−1 = α(an−2
1 ),

where −1 is an inverse operation in the n−group (Q,A).

Proof. Let A and B be two arbitrary operations from
∑

. By Proposition

1.2, (Q,A) and (Q,B) are n−groups. By Theorem 2.6 from Chapter II,

(Q, A) and (Q,B) have {1, n}−neutral operations, denoted, respectively, by

e and eB. Let also the inverse operation in (Q,A) be denoted −1 (cf. Chapter

III).

The following statements hold:

1◦ For all xn
1 ∈ Q and for every sequence an−2

1 over Q the following equality

holds

(1) B(xn
1 ) = A(xn−1

1 , A(xn, an−2
1 , eB(an−2

1 )));

2◦ For all x ∈ Q and for every sequences an−2
1 and bn−2

1 over Q the following

equality holds

A(an−2
1 , eB(an−2

1 ), x) = A(x, bn−2
1 , eB(bn−2

1 )),

i.e. eB is a central operation of the n−group (Q, A); and

3◦ For every sequence an−2
1 over Q the following equality holds

(an−2
1 , eB(an−2

1 ))−1 = eB(an−2
1 ).

The proof of 1◦ :

By Def. 2.2 and by Prop.1.2 for every x2n−1
1 ∈ Q the following equality

holds

B(B(xn
1 ), x2n−1

n+1 ) = A(xn−1
1 , A(x2n−1

n )),

hence, by the substitutions x2n−2
n+1 = an−2

1 and x2n−1 = eB(an−2
1 ), where an−2

1
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is an arbitrary sequence over Q, we conclude that for every xn
1 ∈ Q and for

every sequence an−2
1 over Q the equality (1) holds.

The proof of 2◦ :

Since (Q,B) is an n−group, for every x2n−1
1 ∈ Q the following equality

holds

B(B(xn
1 ), x2n−1

n+1 ) = B(x1, B(xn+1
2 ), x2n−1

n+2 ),

hence, by the statement 1◦, we conclude that for every x2n−1
1 ∈ Q, for every

sequence an−2
1 over Q and for every sequence bn−2

1 over Q the following series

of implications holds

A(A(xn−1
1 , A(xn, an−2

1 , eB(an−2
1 ))), x2n−2

n+1 , A(x2n−1, a
n−2
1 , eB(an−2

1 ))) =

A(x1, A(xn
2 , A(xn+1, b

n−2
1 , eB(bn−2

1 ))), x2n−2
n+2 , A(x2n−1, a

n−2
1 , eB(an−2

1 ))) ⇒
A(x1, A(xn−1

2 , A(xn, a
n−2
1 , eB(an−2

1 )), xn+1), x
2n−2
n+2 , A(x2n−1, a

n−2
1 , eB(an−2

1 ))) =

A(x1, A(xn
2 , A(xn+1, b

n−2
1 , eB(bn−2

1 )), x2n−2
n+2 , A(x2n−1, a

n−2
1 , eB(an−2

1 ))) ⇒
A(x1, A(xn−1

2 , xn, A(an−2
1 , eB(an−2

1 ), xn+1)), x
2n−2
n+2 , A(x2n−1, a

n−2
1 , eB(an−2

1 ))) =

A(x1, A(xn
2 , A(xn+1, b

n−2
1 , eB(bn−2

1 )), x2n−2
n+2 , A(x2n−1, a

n−2
1 , eB(an−2

1 ))).

Hence, since (Q,A) is an n−group, we conclude that for every xn+1 ∈ Q, for

every sequence an−2
1 over Q and for every sequence bn−2

1 over Q the following

equality holds

A(an−2
1 , eB(an−2

1 ), xn+1) = A(xn+1, b
n−2
1 , eB(bn−2

1 )),

hence, by Th. 1.7 from Chapter X, we conclude that eB is a central operation

of the n−group (Q,A). (For n = 2 x2n−2
n+1 = ∅.)

Sketch of the proof of 3◦ :

Puting xn−1
2 = an−2

1 , x1 = eB(an−2
1 ) and xn = x in (1) we obtain

x = A(eB(an−2
1 ), an−2

1 , A(x, an−2
1 , eB(an−2

1 ))),

hence, by Th.1.3 from Chapter III, we conclude that for every x ∈ Q and for

every sequence an−2
1 over Q the following implications hold

x = A(eB(an−2
1 ), an−2

1 , A(x, an−2
1 , eB(an−2

1 ))) ⇒
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A((an−2
1 , eB(an−2

1 ))−1, an−2
1 , x) =

A((an−2
1 , eB(an−2

1 ))−1, an−2
1 , A(eB(an−2

1 ), an−2
1 , A(x, an−2

1 , eB(an−2
1 )))) ⇒

A((an−2
1 , eB(an−2

1 ))−1, an−2
1 , x) =

A(A((an−2
1 , eB(an−2

1 ))−1, an−2
1 , eB(an−2

1 )), an−2
1 , A(x, an−2

1 , eB(an−2
1 )))

1.3III
=⇒

A((an−2
1 , eB(an−2

1 ))−1, an−2
1 , x) =

A(e(an−2
1 ), an−2

1 , A(x, an−2
1 , eB(an−2

1 )))
1.3III
=⇒

A((an−2
1 , eB(an−2

1 ))−1, an−2
1 , x) = A(x, an−2

1 , eB(an−2
1 )),

i.e. the following equality holds

A((an−2
1 , eB(an−2

1 ))−1, an−2
1 , x) = A(x, an−2

1 , eB(an−2
1 )).

Hence, by the substitution x = e(an−2
1 ), we conclude that for every sequence

an−2
1 over Q the following equality holds

(an−2
1 , eB(an−2

1 ))−1 = eB(an−2
1 ).

Finally, by 1◦ − 3◦we conclude that Theorem 3.1 holds.1 2

3.2. Theorem [Ušan 2001/1]: Let (Q,A) be an n−group, n ≥ 3, A ∈
∑

, |∑ | ≥ 2, and let for all B ∈ ∑
there be a central operation α of the

n−group (Q,A) such that for every xn
1 ∈ Q and for every sequence an−2

1 over

Q the following equalities hold

B(xn
1 ) = A(xn−1

1 , A(α(an−2
1 ), an−2

1 , xn)) and

(an−2
1 ,α(an−2

1 ))−1 = α(an−2
1 ),

where −1 is an inverse operation in the n−group (Q,A). Then (Q,
∑

) is a

SAAnQ of the type XX.

Proof. The following statements hold:

◦1 If B ∈ ∑
, then (Q,B) is an n−quasigroup; and

◦2 For all i ∈ {2, . . . , n}, for every x2n−1
1 ∈ Q and for every B,C ∈ ∑

the

following equality holds

1For B = A,α = e.



XI Super–associative algebras with n−quasigroup operations 113

B(B(xn
1 ), x2n−1

n+1 ) = C(xi−1
1 , C(xi+n−1

i ), x2n−1
i+n ).

The proof of ◦1 :

Let B be an arbitrary operation from
∑

. Also, let α be a central operation

of the n−group (Q,A) such that for all xn
1 ∈ Q and for every sequence an−2

1

over Q the following equality holds

B(xn
1 ) = A(xn−1

1 , A(α(an−2
1 ), an−2

1 , xn)).

Hence, by Prop. 1.9 from Chapter X, by Def. 1.10 from Chapter X, and Def.

1.1 from Chapter I, we conclude that the statement ◦1 holds.

The proof of ◦2 :

Let B and C be arbitrary operations from
∑

. Also, let α and β be

central operations of the n−group (Q,A) such that for all xn
1 ∈ Q and for

every sequence an−2
1 over Q the following equalities hold:

B(xn
1 ) = A(xn−1

1 , A(α(an−2
1 ), an−2

1 , xn)) and

C(xn
1 ) = A(xn−1

1 , A(β(an−2
1 ), an−2

1 , xn)).

Further on, let permutation α [β] be associated to the central operation α [β]

of the n−group (Q,A). Hence, by Th. 1.11 from Chapter X and by Th. 1.13

from Chapter X, we conclude that for every xn
1 ∈ Q the following equalities

hold:
B(B(xn

1 ), x2n−1
n+1 )

1.11X
== A(A(xn−1

1 , α(xn)), x2n−2
n+1 , α(x2n−1))

1.11X
== A(αA(xn−1

1 , xn), x2n−2
n+1 , α(x2n−1))

1.11X
== α(αA(A(xn

1 ), x2n−1
n+1 ))

1.13X
== A(A(xn

1 ), x2n−1
n+1 ), and

C(xi−1
1 , C(xi+n−1

i ), x2n−1
i+n )

1.11X
== A(β(x1), x

i−1
2 , A(β(xi), x

i+n−1
i+1 ), x2n−1

i+n )
1.11X

== β(βA(xi−1
1 , A(xi+n−1

i ), x2n−1
i+n ))

1.13X
== A(xi−1

1 , A(xi+n−1
i ), x2n−1

i+n ).
Since (Q,A) is an n−group, we conclude that the statement ◦2 holds.

Finally, by ◦1,◦ 2 and by Def. 2.2, we conclude that the theorem holds. 2

3.3 Remark: SAA2Q of the type XX was described in [Belousov 1965].
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Cf. Th. 3.1 with Th. 1.3 [− (v)].

4 A description of an SAAnQ of the type XY

with condition (∀i)X1 = X2i−1

4.1. Theorem [Ušan 2001/1]: Let (Q,
∑

) be an SAAnQ of the type XY

with condition (∀i)X1 = X2i−1 and n ≥ 3. Also, let A be an arbitrary op-

eration from
∑

[cf. Prop. 1.2 ]. Then, for all B ∈ ∑
there is a central

operation α of the n−group (Q,A) such that for every xn
1 ∈ Q and for every

sequence an−2
1 over Q the following equality holds:

B(xn
1 ) = A(xn−1

1 , A(α(an−2
1 ), an−2

1 , xn)).

Proof. Let A and B be two arbitrary operations from
∑

. By Proposition

1.2, (Q,A) and (Q,B) are n−groups. By Th. 2.6 from Chapter II, (Q,A)

and (Q,B) have {1, n}−neutral operations, denoted, respectively, by e and

eB. Let also the inverse operation in (Q,A) be denoted −1 (cf. Chapter III).

The following statements hold:

1◦ For all xn
1 ∈ Q and for every sequence an−2

1 over Q we have

(1) B(xn
1 ) = A(xn−1

1 , A((an−2
1 , eB(an−2

1 ))−1, an−2
1 , xn)); and

2◦ For all x ∈ Q and for every sequences an−2
1 and bn−2

1 over Q the following

holds

A((an−2
1 , eB(an−2

1 ))−1, an−2
1 , x) = A(x, (bn−2

1 , eB(bn−2
1 ))−1, bn−2

1 ),

i.e. α, where α(cn−2
1 )

def
= (cn−2

1 , eB(cn−2
1 ))−1, is a central operation of the

n−group (Q,A).

The proof of 1◦.

By Def. 2.2 and by condition (∀i)X1 = X2i−1, for every x2n−1
1 ∈ Q the

following equality holds

A(B(xn
1 ), x2n−1

n+1 ) = A(xn−1
1 , B(x2n−1

n )),

hence, by the substitutions x2n−2
n+1 = an−2

1 and x2n−1 = e(an−2
1 ), where an−2

1
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is an arbitrary sequence over Q, we conclude that for every xn
1 ∈ Q and for

every sequence an−2
1 over Q the following equality holds

(a) B(xn
1 ) = A(xn−1

1 , B(xn, an−2
1 , e(an−2

1 ))).

Putting xn−1
2 = an−2

1 , x1 = eB(an−2
1 ) and xn = x in (a), we obtain

x = A(eB(an−2
1 ), an−2

1 , B(x, an−2
1 , e(an−2

1 ))),

hence, by Th. 1.3 from Chapter III, we conclude that for every x ∈ Q and

for every sequence an−2
1 over Q the following implications hold

x = A(eB(an−2
1 ), an−2

1 , B(x, an−2
1 , e(an−2

1 ))) ⇒
A((an−2

1 , eB(an−2
1 ))−1, an−2

1 , x) =

A((an−2
1 , eB(an−2

1 ))−1, an−2
1 , A(eB(an−2

1 ), an−2
1 , B(x, an−2

1 , e(an−2
1 )))) ⇒

A((an−2
1 , eB(an−2

1 ))−1, an−2
1 , x) =

A(A((an−2
1 , eB(an−2

1 ))−1, an−2
1 , eB(an−2

1 )), an−2
1 , B(x, an−2

1 , e(an−2
1 ))) ⇒

A((an−2
1 , eB(an−2

1 ))−1, an−2
1 , x) =

A(e(an−2
1 ), an−2

1 , B(x, an−2
1 , e(an−2

1 ))) ⇒
A((an−2

1 , eB(an−2
1 ))−1, an−2

1 , x) =

B(x, an−2
1 , e(an−2

1 )),

i.e. the following equality holds

(b) B(x, an−2
1 , e(an−2

1 )) = A((an−2
1 , eB(an−2

1 ))−1, an−2
1 , x).

Putting (b) in (a) we obtain 1◦.

The proof of 2◦.

Let

(c) α(cn−2
1 )

def
= (cn−2

1 , eB(cn−2
1 ))−1

for every sequence cn−2
1 over Q. By the substitutions (c), the formula (1)

reduced to

(1’) B(xn
1 ) = A(xn−1

1 , A(α(an−2
1 ), an−2

1 , xn)).

By Def. 2.2 and by condition (∀i)X1 = X2i−1, for every x2n−1
1 ∈ Q the

following equality holds
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A(xn−2
1 , B(x2n−2

n−1 ), x2n−1) = A(xn−1
1 , B(x2n−1

n )).

Hence, by 1◦[(1′)], we conclude that for every x2n−1
1 ∈ Q, for every sequence

an−2
1 over Q and for every sequence bn−2

1 over Q the following series of impli-

cations holds

A(xn−2
1 , A(x2n−3

n−1 , A(α(an−2
1 ), an−2

1 , x2n−2)), x2n−1) =

A(xn−1
1 , A(x2n−2

n , A(α(bn−2
1 ), bn−2

1 , x2n−1))) ⇒
A(xn−2

1 , A(x2n−3
n−1 , A(α(an−2

1 ), an−2
1 , x2n−2)), x2n−1) =

A(xn−1
1 , A(x2n−3

n , A(x2n−2, α(bn−2
1 ), bn−2

1 ), x2n−1)) ⇒
A(xn−2

1 , A(x2n−3
n−1 , A(α(an−2

1 ), an−2
1 , x2n−2)), x2n−1) =

A(xn−2
1 , A(x2n−3

n−1 , A(x2n−2, α(bn−2
1 ), bn−2

1 )), x2n−1) ⇒
A(α(an−2

1 ), an−2
1 , x2n−2) = A(x2n−2,α(bn−2

1 ), bn−2
1 ),

hence, by Def. 1.1 from Chapter X, we conclude that α [cf. (c)] is a central

operation of the n−group (Q,A).

Finally, by 1◦ and 2◦, we conclude that Theorem 4.1 holds.2 2

4.2. Theorem [Ušan 2001/1]: Let (Q,A) be an n−group, n ≥ 3, A ∈
∑

, |∑ | ≥ 2, and let for all B ∈ ∑
there exist a central operation α of the

n−group (Q,A) such that for every xn
1 ∈ Q and for every sequence an−2

1 over

Q the following equality holds

B(xn
1 ) = A(xn−1

1 , A(α(an−2
1 ), an−2

1 , xn)).

Then (Q,
∑

) is an SAAnQ of the type XY with condition (∀i ∈ {2, . . . , n})X1 =

X2i−1.

Proof. The following statements hold:

◦1 If B ∈ ∑
, then (Q,B) is an n−quasigroup; and

◦2 For all i ∈ {2, . . . , n}, for every x2n−1
1 ∈ Q and for every B,C ∈ ∑

the

following equality holds

2For B = A, α = e
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B(C(xn
1 ), x2n−1

n+1 ) = B(xi−1
1 , C(xi+n−1

i ), x2n−1
i+n ).

The proof of ◦1 :

Let B be an arbitrary operation from
∑

. Also, let α be a central operation

of the n−group (Q,A) such that for all xn
1 ∈ Q and for every sequence an−2

1

over Q the following equality holds

B(xn
1 ) = A(xn−1

1 , A(α(an−2
1 ), an−2

1 , xn)).

Hence, by Prop. 1.9 from Chapter X, by Def. 1.10 from Chapter X, and Def.

1.1 from Chapter I, we conclude that the statement ◦1 holds.

The proof of ◦2 :

Let B and C be arbitrary operations from
∑

. Also, let α and β be

central operations of the n−group (Q,A) such that for all xn
1 ∈ Q and for

every sequence an−2
1 over Q the following equality holds

B(xn
1 ) = A(xn−1

1 , A(α(an−2
1 ), an−2

1 , xn)) and

C(xn
1 ) = A(xn−1

1 , A(β(an−2
1 ), an−2

1 , xn)).

Further on, let permutation α [β] be associated to the central operation α [β]

of the n−group (Q,A). Hence, by Th. 1.11 from Chapter X, we conclude

that for every x2n−1
1 ∈ Q the following equalities hold:

B(C(xn
1 ), x2n−1

n+1 )
1.11X
== A(A(xn−1

1 , β(xn)), x2n−2
n+1 , α(x2n−1))

1.11X
== α(A(βA(xn

1 ), x2n−1
n+1 ))

1.11X
== α(βA(A(xn

1 ), x2n−1
n+1 )) and

B(xi−1
1 , C(xi+n−1

i ), x2n−1
i+n )

1.11X
== A(α(x1), x

i−1
2 , A(xi+n−2

i , β(xi+n−1)), x
2n−1
i+n )

1.11X
== α(A(xi−1

1 , βA(xi+n−1
i ), x2n−1

i+n ))
1.11X
== α(βA(xi−1

1 , A(xi+n−1
i ), x2n−1

i+n )).
Since (Q,A) is an n−group, we conclude that the statement ◦2 holds.

Finally, by ◦1, ◦2 and Def. 2.2, we conclude that Th. 4.2 holds. 2

4.3. Remark: SAA2Q of the type XY with condition (∀i)X1 = X2i−1 was

described in [Belousov 1965]. Cf. Th. 4.1 with Th. 1.3 [−(iv)].
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5 A description of an SAAnQ of the type XY

with condition (∃i ∈ {2, . . . , n})X2(i−1)−1 6=
X2i−1

5.1. Theorem [Ušan 2001/1]: Let (Q,
∑

) be an SAAnQ of the type XY

with condition (∃i ∈ {2, . . . , n})X2(i−1)−1 6= X2i−1 and n ≥ 3. Also, let C be

an arbitrary operation from
∑

[cf. Prop. 1.2]. Then, for all D ∈ ∑
there is

a central operation α of the n−group (Q,C) such that for every xn
1 ∈ Q and

for every sequence an−2
1 over Q the following equality holds:

D(xn
1 ) = C(xn−1

1 , C(α(an−2
1 ), an−2

1 , xn)).

Proof. Let A and B be two arbitrary operations from
∑

. By Prop. 1.2,

(Q, A) and (Q,B) are n−groups. By Th. 2.6 from Chapter II, (Q,A) and

(Q, B) have {1, n}−neutral operations, denoted, respectively, by eA and eB.

Let also the inverse operation in (Q,A) be denoted by 1A , and the inverse

operation in (Q,B) be denoted by 1B , (cf. Chapter III). By Def. 2.2 and by

condition (∃i ∈ {2, . . . , n})X2(i−1)−1 6= X2i−1, we conclude that there is an

j ∈ {1, . . . , n− 1} such that for every x2n−1
1 ∈ Q the following equality holds

(1) A(xj−1
1 , B(xj+n−1

j ), x2n−1
j+n ) = B(xj

1, A(xj+n
j+1 ), x2n−1

j+n+1).

Firstly we observe that under the assumption the following statements

hold:

1◦ For all xn
1 ∈ Q and for every sequence an−2

1 over Q the following

equalities hold

(1A) A(xn
1 ) = B(xj−1

1 , B(xj, a
n−2
1 , (an−2

1 , eA(an−2
1 ))−1B), xn

j+1) and

(1B) B(xn
1 ) = A(xj

1, A((an−2
1 , eB(an−2

1 ))−1A), an−2
1 , xj+1), x

n
j+2); and

2◦ For all x ∈ Q and for every sequences an−2
1 and bn−2

1 over Q the

following equalities hold

(1̂A) B(x, an−2
1 , (an−2

1 , eA(an−2
1 ))−1B) = B(bn−2

1 , (bn−2
1 , eA(bn−2

1 ))−1B , x),
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(1̂B) A((an−2
1 , eB(an−2

1 ))−1A , an−2
1 , x) = A(x, (bn−2

1 , eB(bn−2
1 ))−1A , bn−2

1 ),

i.e. α, where α(cn−2
1 )

def
= (cn−2

1 , eA(cn−2
1 ))−1B , is a central operation of the

n−group (Q,B) and β, where β(cn−2
1 )

def
= (cn−2

1 , eB(cn−2
1 ))−1A , is a central op-

eration of the n−group (Q,A).

The proof of 1◦ :

By the substitutions xj+n−2
j+1 = an−2

1 and xj+n−1 = e(an−2
1 ) in (1), where

an−2
1 is an arbitrary sequence over Q, we conclude that for every xj

1, a
n−2
1 , x2n−1

j+n ∈
Q the following equality holds

(a) A(xj−1
1 , B(xj, a

n−2
1 , eA(an−2

1 )), x2n−1
j+n ) = B(xj

1, x
2n−1
j+n ).

By Th. 1.3 from Chapter III and by Def. 1.1 from Chapter I, we conclude

that for every an−2
1 , u, xj ∈ Q the following equivalence holds

(b) B(xj, a
n−2
1 , eA(an−2

1 )) = u ⇔ xj = B(u, an−2
1 , (an−2

1 , eA(an−2
1 ))−1B).

By (a) and (b), we conclude that for every yn
1 , an−2

1 ∈ Q the following

equality holds

A(yn
1 ) = B(yj−1

1 , B(yj, a
n−2
1 , (an−2

1 , eA(an−2
1 ))−1B), yn

j+1),

i.e. the equality (1A) holds.

Similarly, if we put in (1) xj+n−1
j+2 = an−2

1 and xj+1 = eB(an−2
1 ), we con-

clude that for every yn
1 , an−2

1 ∈ Q the equality

B(yn
1 ) = A(yj

1, A((an−2
1 , eB(an−2

1 ))−1A , an−2
1 , yj+1), y

n
j+2)

holds.

The proof of 2◦ :

We distinguish the following cases:

Case I:

(I1) A(B(xn
1 ), x2n−1

n+1 ) = B(x1, A(xn+1
2 ), x2n−1

n+2 ) and

(I2) B(x1, A(xn+1
2 ), x2n−1

n+2 ) = B(x2
1, A(xn+2

3 ), x2n−1
n+3 ).

Case II:

(II1) A(B(xn
1 ), x2n−1

n+1 ) = A(x1, B(xn+1
2 ), x2n−1

n+2 ) and
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(II2) A(x1, B(xn+1
2 ), x2n−1

n+2 ) = B(x2
1, A(xn+2

3 ), x2n−1
n+3 ).

Case III:

(III1) A(B(xn
1 ), x2n−1

n+1 ) = B(x1, A(xn+1
2 ), x2n−1

n+2 ) and

(III2) B(x1, A(xn+1
2 ), x2n−1

n+2 ) = A(x2
1, B(xn+2

3 ), x2n−1
n+3 ).

Case IV:

(IV1) A(B(xn
1 ), x2n−1

n+1 ) = A(x1, B(xn+1
2 ), x2n−1

n+2 ),

(IV2) A(x1, B(xn+1
2 ), x2n−1

n+2 ) = A(x2
1, B(xn+2

3 ), x2n−1
n+3 ) and

(IV3) (1) for some j ∈ {3, . . . , n− 1}.
The proof of 2◦–I:

In case I the formulas (1) and (1B), respectively, reduced to

(I1) [(1) for j = 1] and

(1′A) A(xn
1 ) = B(B(x1, a

n−2
1 ,α(an−2

1 )), xn
2 ) [(1A) for j = 1],

where α(an−2
1 )

def
= (an−2

1 , eA(an−2
1 ))−1B .

By (1′A) and by (I2), we conclude that for every x2n−1
1 ∈ Q, for every

sequence an−2
1 over Q and for every sequence bn−2

1 over Q the following series

of implications holds

B(x1, B(B(x2, a
n−2
1 ,α(an−2

1 )), xn+1
3 ), x2n−1

n+2 ) =

B(x2
1, B(B(x3, b

n−2
1 ,α(bn−2

1 )), xn+2
4 ), x2n−1

n+3 ) ⇒
B(x1, B(x2, B(an−2

1 ,α(an−2
1 ), x3), x

n+1
4 ), x2n−1

n+2 ) =

B(x2
1, B(B(x3, b

n−2
1 ,α(bn−2

1 )), xn+2
4 ), x2n−1

n+3 ) ⇒
B(x2

1, B(B(an−2
1 ,α(an−2

1 ), x3), x
n+2
4 ), x2n−1

n+3 ) =

B(x2
1, B(B(x3, b

n−2
1 ,α(bn−2

1 )), xn+2
4 ), x2n−1

n+3 ) ⇒
B(an−2

1 ,α(an−2
1 ), x3) = B(x3, b

n−2
1 , α(bn−2

1 )),

hence, by Th. 1.7 from Chapter X, we conclude that α is a central operation

of the n−group (Q,B).

The proof of 2◦–II:
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In case II the formulas (1) and (1A), respectively, reduced to (II2) [(1)

for j = 2] and

(1′B) B(xn
1 ) = A(x2

1, A(β(an−2
1 ), an−2

1 , x3), x
n
4 ) [(1B) for j = 2],

where β(an−2
1 )

def
= (an−2

1 , eB(an−2
1 ))−1A .

By (1′B) and by (II1), we conclude that for every x2n−1
1 ∈ Q, for every

sequence an−2
1 over Q and for every sequence bn−2

1 over Q the following series

of implications holds

A(A(x2
1, A(β(an−2

1 ), an−2
1 , x3), x

n
4 ), x2n−1

n+1 ) =

A(x1, A(x3
2, A(β(bn−2

1 ), bn−2
1 , x4), x

n+1
5 ), x2n−1

n+2 ) ⇒
A(A(x2

1, A(β(an−2
1 ), an−2

1 , x3), x
n
4 ), x2n−1

n+1 ) =

A(x1, A(x2, A(x3,β(bn−2
1 ), bn−2

1 ), xn+1
4 ), x2n−1

n+2 ) ⇒
A(A(x2

1, A(β(an−2
1 ), an−2

1 , x3), x
n
4 ), x2n−1

n+1 ) =

A(A(x2
1, A(x3,β(bn−2

1 ), bn−2
1 ), xn

4 ), x2n−1
n+1 ) ⇒

A(β(an−2
1 ), an−2

1 , x3) = A(x3, β(bn−2
1 ), bn−2

1 ),

hence, by Def. 1.1 from Chapter X, we conclude that β is a central operation

of the n−group (Q,A).

The proof of 2◦–III:

In case III the formulas (1) and (1A), respectively, reduced to

(III1) [(1) for j = 1] and

(1′A) A(xn
1 ) = B(B(x1, a

n−2
1 ,α(an−2

1 )), xn
2 ) [(1A) for j = 2],

where α(an−2
1 )

def
= (an−2

1 , eA(an−2
1 ))−1B .

By (1′A) and by (III2), we conclude that for every x2n−1
1 ∈ Q, for every

sequence an−2
1 over Q and for every sequence bn−2

1 over Q the following im-

plications hold

B(x1, B(B(x2, a
n−2
1 ,α(an−2

1 )), xn+1
3 ), x2n−1

n+2 ) =

B(B(x1, b
n−2
1 ,α(bn−2

1 )), x2, B(xn+2
3 ), x2n−1

n+3 ) ⇒
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B(x1, B(x2, a
n−2
1 ,α(an−2

1 )), B(xn+2
3 ), x2n−1

n+3 ) =

B(x1, B(bn−2
1 ,α(bn−2

1 ), x2), B(xn+2
3 ), x2n−1

n+3 ) ⇒
B(x2, a

n−2
1 ,α(an−2

1 )) = B(bn−2
1 ,α(bn−2

1 ), x2),

hence, by Th. 1.7 from Chapter X, we conclude that α is a central operation

of the n−group (Q,B).

The proof of 2◦–IV:

In case IV the formulas (1) and (1B), reduced to (1) and (1B) for some

j ∈ {3, . . . , n}. Furthermore, let

β(cn−2
1 )

def
= (cn−2

1 , eB(cn−2
1 ))−1A .

By (1B) and by (IV1), we conclude that for every x2n−1
1 ∈ Q, for every

sequence an−2
1 over Q and for every sequence bn−2

1 over Q the following series

of implications holds

A(A(xj
1, A(β(an−2

1 ), an−2
1 , xj+1), x

n
j+2), x

2n−1
n+1 ) =

A(x1, A(xj+1
2 , A(β(bn−2

1 ), bn−2
1 , xj+2), x

n+1
j+3 ), x2n−1

n+2 ) ⇒
A(A(xj

1, A(β(an−2
1 ), an−2

1 , xj+1), x
n
j+2), x

2n−1
n+1 ) =

A(x1, A(xj
2, A(xj+1,β(bn−2

1 ), bn−2
1 ), xn+1

j+2 ), x2n−1
n+2 ) ⇒

A(A(xj
1, A(β(an−2

1 ), an−2
1 , xj+1), x

n
j+2), x

2n−1
n+1 ) =

A(A(xj
1, A(xj+1,β(bn−2

1 ), bn−2
1 ), xn

j+2), x
2n−1
n+1 ) ⇒

A(β(an−2
1 ), an−2

1 , xj+1) = A(xj+1,β(bn−2
1 ), bn−2

1 ),

hence, by Def. 1.1 from Chapter X, we conclude that β is a central operation

of the n−group (Q,A).

The proof 2◦ is completed.

Finally, by 1◦, 2◦ and by Prop. 1.3 from Chapter X, we conclude that the

proposition is satisfied. 2

5.2. Theorem [Ušan 2001/1]: Let (Q,
∑

) be an n−group, n ≥ 3, A ∈
∑

, |∑ | ≥ 2 and let for all B ∈ ∑
there exist a central operation α of the
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n−group (Q,A) such that for every xn
1 ∈ Q and for every sequence an−2

1 over

Q the following equality holds

B(xn
1 ) = A(xn−1

1 , A(α(an−2
1 ), an−2

1 , xn)).

Then (Q,
∑

) is an SAAnQ of the type XY with condition (∃i ∈ {2, . . . , n})
X2(i−1)−1 6= X2i−1.

Proof. The following statements hold:

◦1 If B ∈ ∑
, then (Q,B) is an n−quasigroup;

◦2 For all i ∈ {2, . . . , n}, for every x2n−1
1 ∈ Q and for every B, C ∈ ∑

the

following equality holds

B(C(xn
1 ), x2n−1

n+1 ) = B(xi−1
1 , C(xi+n−1

i ), x2n−1
i+n ); and

◦3 For all j ∈ {0, . . . , n− 1}, for every x2n−1
1 ∈ Q and for every B, C ∈ ∑

the following equality holds

B(xj
1, C(xj+n

j+1 ), x2n−1
j+n+1) = C(xj

1, B(xi+n
j+1), x

2n−1
i+n+1).

The proof of ◦1 : The proof of ◦1 from Th. 4.2.

The proof of ◦2 : The proof of ◦2 from Th. 4.2.

The proof of ◦3 :

Let B and C be arbitrary operations from
∑

. Also, let α and β be

central operations of the n−group (Q,A) such that for all xn
1 ∈ Q and for

every sequence an−2
1 over Q the following equalities hold:

B(xn
1 ) = A(xn−1

1 , A(α(an−2
1 ), an−2

1 , xn)) and

C(xn
1 ) = A(xn−1

1 , A(β(an−2
1 ), an−2

1 , xn)).

Further on, let permutation α [β] be associated to the central operation

α [β] of the n−group (Q,A). Hence, by Th. 1.11 from Chapter X and by

Th. 1.12 from Chapter X, we conclude that for every x2n−1
1 ∈ Q the following

equalities hold:
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B(xj
1, C(xj+n

j+1 ), x2n−1
j+n+1)

1.11X
== αA(xj

1, βA(xj+n
j+1 ), x2n−1

j+n+1)
1.11X

== α(βA(xj
1, A(xj+n

j+1 ), x2n−1
j+n+1))

1.12X
== β(αA(xj

1, A(xj+n
j+1 ), x2n−1

j+n+1))

1.11X
== βA(xj

1, αA(xj+n
j+1 ), x2n−1

j+n+1)

== C(xj
1, B(xj+n

j+1 ), x2n−1
j+n+1).

The proof of ◦3 is complete.

Finally, by ◦1−◦ 3 and Def. 2.2, we conclude that Th. 5.2 holds. 2

5.3. Remark: SAA2Q of the type XY with condition X1 6= X3 was de-

scribed in [Belousov 1965]. Cf. Th. 5.1 with Th. 1.3 [−(vi)].

6 A description of an SAAnQ in terms of

Hosszú-Gluskin algebras

A consequence of Theorem 3.1, of Theorem 2.2 from Chapter X and of The-

orem 2.3 from Chapter X is the following proposition:

6.1. Theorem [Ušan 2001/1]: Let (Q,
∑

) be an SAAnQ of the type XX

and n ≥ 3. Also, let A be an arbitrary operation from
∑

and (Q, {·, ϕ, b})
an nHG−algebra associated to the n−group (Q,A). Then, for every B ∈ ∑

there is exactly one a ∈ Q such that for every x, xn
1 ∈ Q the following equal-

ities hold:

(a) B(xn
1 ) = x1 · ϕ(x2) · . . . · ϕn−2(xn−1) · b · a · b · xn,

(b) (a · b) · x = x · (a · b),
(c) ϕ(a) = a and

(d) (a · b) · (a · b) = e,

where e is the neutral element of the group (Q, ·).
A consequence of Theorem 4.1, Theorem 5.1 and Theorem 2.2 from

Chapter X is the following proposition:
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6.2. Theorem [Ušan 2001/1]: Let (Q,
∑

) be an SAAnQ of the type XY

and n ≥ 3. Also, let A be an arbitrary operation from
∑

and (Q, {·, ϕ, b})
an nHG−algebra associated to the n−group (Q, A). Then, for every B ∈ ∑

there is exactly one a ∈ Q such that for every x, xn
1 ∈ Q the equalities (a)–(c)

from Th. 6.1 hold.

6.3. Theorem [Ušan 2001/1]: Let n ≥ 3, let (Q,A) be an n−group,

(Q, {·, ϕ, b}) its associated nHG−algebra, A ∈ ∑
, |∑ | ≥ 2, and let for

all B ∈ ∑
there is an element a ∈ Q such that for every x, xn

1 ∈ Q the

following equalities hold

ϕ(a) = a,

(a · b) · x = x · (a · b) and

B(xn
1 ) = x1 · ϕ(x2) · . . . · ϕn−2(xn−1) · b · a · b · xn.

Then (Q,
∑

) is a SAAnQ of the type XY.

Proof. By Th. 4.2, Th. 5.2 and by Th. 2.4 from Chapter X. 2

6.4. Theorem [Ušan 2001/1]: Let n ≥ 3, let (Q,A) be an n−group,

(Q, {·, ϕ, b}) its associated nHG−algebra, A ∈ ∑
, |∑ | ≥ 2, and let for

all B ∈ ∑
there is an element a ∈ Q such that for every x, xn

1 ∈ Q the

following equalities hold

ϕ(a) = a,

(a · b) · x = x · (a · b),
(a · b) · (a · b) = e [e the neutral element of the group (Q, ·)] and

B(xn
1 ) = x1 · ϕ(x2) · . . . · ϕn−1(xn−1 · b · a · b · xn.

Then (Q,
∑

) is a SAAnQ of the type XX.

Proof. By Th. 3.2 and by Th. 2.5 from Chapter X. 2
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7 On a description of the case n = 3 by Yu.

M. Movsisyan

SAA3Q were described firstly by Yu. M. Movsisyan in 1984 (cf. [Movsisyan

1986]).

In this section we compare one proposition of Yu. M. Movsisyan [[Mov-

sisyan 1986] p. 152, direction ” ⇒ ” of Th. 2.2.37] with the corresponding

proposition from 6 for n = 3 [Th. 6.2 for n = 3]. Therefore, we advance the

following definition:

7.1. Definition [Ušan 2001/1]: Let (Q, {·, β, r, s, t}) be an algebra, where ·
is a binary operation in Q, β is a permutation of the set Q, and r, s, t fixed

elements of the set Q. Then we say that (Q, {·, β, r, s, t}) is a 3M−algebra

iff the following statements hold:

(1) (Q, ·) is a group;

(2) β ∈ Aut(Q, ·);
(3) β(s · r) = r · s · t−1, where −1 is the inverse operation in the group (Q, ·);
and

(4) (∀x ∈ Q)β2(x) · (β(r−1) · s) = (β(r−1) · s) · x.

Using Def. 7.1, Theorem of Movsisyan corresponding Th. 6.2 for n = 3

[[Movsisyan 1986], p. 152, direction ” ⇒ ” of Theorem 2.2.37], can be

formulated in the following way:

7.2. Theorem [Movsisyan 1984]: Let (Q,
∑

) be an SAA3Q of the type XY.

Then there exists a 3M−algebra (Q, {·, β, r, s, t}) such that for every B ∈ Q

there is exactly one p ∈ Q such that for every x, x3
1 ∈ Q the following equali-

ties are satisfied

(a) B(x3
1) = x1 · r · β(x2) · s · p · x3,

(b) p · x = x · p and

(c) β(p) = t · p.
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Theorem 6.2 can be formulated in a similar way for n = 3 :

7.3. Proposition Let (Q,
∑

) be an SAA3Q of the type XY. Then there

exists a 3HG−algebra {Q, {·, ϕ, b}) such that for every B ∈ ∑
there is exactly

one a ∈ Q such that for every x, x3
1 ∈ Q the following equalities are satisfied

(â) B(x3
1) = x1 · ϕ(x2) · b · a · b · x3,

(b̂) (a · b) · x = x · (a · b) and

(ĉ) ϕ(a) = a.

8 On congruences in a SAAnQ

8.1. Theorem [Ušan, Žǐzović 2004]: Let (Q;
∑

) be a super-associative

algebra with n−quasigroup operations (n ≥ 3) [cf. Def. 1.1] and let A be an

arbitrary element of
∑

. Then, the following equality holds

Con(Q;
∑

) = Con(Q; A).

Proof. Let (Q;
∑

) be a super-associative algebra with n−quasigroup oper-

ations and let A be an arbitrary element of
∑

. Also, let (Q; ·, ϕ, b) be an

arbitrary nHG−algebra associated to the n−group (Q; A) [cf. Prop. 1.2-XI

and Def. 2.3-IV]. Then, by Th. 6.1-XI and Th. 6.2-XI, for every B ∈ ∑
there

is exactly one a ∈ Q such that for every x, xn
1 ∈ Q the following equalities

hold

B(xn
1 ) = x1 · ϕ(x2) · . . . · ϕn−2(xn−1) · b · a · b · xn,

(a · b)x = x · (a · b) and

ϕ(a) = a.

Whence, we have: (Q; ·, ϕ, b · a · b) is an nHG−algebra associated to the

n−group (Q; B).

Finally, by Th. 3.1-VI, we conclude that the proposition is satisfied. 2
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Chapter XII

NOTE ON (k(n− 1) + 1)−SEMIGROUPS

1 Auxiliary propositions

1.1. Proposition [Dudek 1995]: Let n ≥ 3, let (Q,A) be an n−groupoid

and let E be an (n−2)−ary operation in Q. Also, let for all x, x2n−1
1 ∈ Q, for

every sequence an−2
1 over Q and for every sequence bn−2

1 over Q the following

equalities hold:

(i) A(A(xn
1 ), x2n−1

n+1 ) = A(x1, A(xn+1
2 ), x2n−1

n+2 ),

(ii) A(x, an−2
1 , E(an−2

1 )) = x and

(iii) A(bn−2
1 , E(bn−2

1 ), x) = x.

Then (Q,A) is an n−group.

Proof.1 Firstly we observe that under the assumption the following state-

ments hold:

1◦ For every x, y, a, an−2
1 ∈ Q the implication holds

A(x, a, an−2
1 ) = A(y, a, an−2

1 ) ⇒ x = y;

2◦ (Q,A) is an n−semigroup;

3◦ (∀a ∈ Q)(∀ci ∈ Q)n−3
1 a = E(cn−3

1 , E(a, cn−3
1 ));

4◦ For every x, y, a, an−2
1 ∈ Q the implication

A(a, x, an−2
1 ) = A(a, y, an−2

1 ) ⇒ x = y

holds;

5◦ For every x, y, a, an−2
1 ∈ Q the equivalence

A(an−2
1 , x, a) = A(an−2

1 , y, a) ⇔ x = y

holds; and

1[Ušan, Žižović 2002/1].
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6◦ For every x, a, b, an−2
1 ∈ Q and for all sequence cn−3

1 over Q

A(a, x, an−2
1 ) = b ⇔

x = A(cn−3
1 , E(a, cn−3

1 ), b, E(an−2
1 )).

Sketch of the proof of 1◦ :

A(x, a, an−2
1 ) = A(y, a, an−2

1 ) ⇒
A(A(x, a, an−2

1 ), E(an−2
1 ), cn−3

1 , E(a, cn−3
1 )) =

A(A(y, a, an−2
1 ), E(an−2

1 ), cn−3
1 , E(a, cn−3

1 ))
(i)⇒

A(x,A(a, an−2
1 , E(an−2

1 )), cn−3
1 , E(a, cn−3

1 )) =

A(y, A(a, an−2
1 , E(an−2

1 )), cn−3
1 , E(a, cn−3

1 ))
(ii)⇒

A(x, a, cn−3
1 , E(a, cn−3

1 )) = A(y, a, cn−3
1 , E(a, cn−3

1 ))
(ii)⇒

x = y.

The proof of 2◦ :

By 1◦ and by Prop. 2.1 from Chapter III.

Sketch of the proof of 3◦ :

A(a, cn−3
1 , E(a, cn−3

1 ), E(cn−3
1 , E(a, cn−3

1 )))
(iii)
= E(cn−3

1 , E(a, cn−3
1 )),

A(a, cn−3
1 , E(a, cn−3

1 ), E(cn−3
1 , E(a, cn−3

1 )))
(ii)
=a.

Sketch of the proof of 4◦ :

A(a, x, an−2
1 ) = A(a, y, an−2

1 ) ⇒
A(cn−3

1 , E(a, cn−3
1 ), A(a, x, an−2

1 ), E(an−2
1 )) =

A(cn−3
1 , E(a, cn−3

1 ), A(a, y, an−2
1 ), E(an−2

1 ))
2◦⇒

A(cn−3
1 , E(a, cn−3

1 ), a, A(x, an−2
1 , E(an−2

1 ))) =

A(cn−3
1 , E(a, cn−3

1 ), a, A(y, an−2
1 , E(an−2

1 )))
(ii)⇒

A(cn−3
1 , E(a, cn−3

1 ), a, x) = A(cn−3
1 , E(a, cn−3

1 ), a, y)
3◦⇒

A(cn−3
1 , E(a, cn−3

1 ), E(cn−3
1 , E(a, cn−3

1 )), x) =

A(cn−3
1 , E(a, cn−3

1 ), E(cn−3
1 , E(a, cn−3

1 )), y)
(iii)⇒x = y.

Sketch of the proof of 5◦ :

A(an−2
1 , x, a) = A(an−2

1 , y, a) ⇒
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A(d2
1, A(an−2

1 , x, a), dn−1
3 ) = A(d2

1, A(an−2
1 , y, a), dn−1

3 )
2◦⇒

A(A(d2
1, a

n−2
1 ), x, a, dn−1

3 ) = A(A(d2
1, a

n−2
1 ), y, a, dn−1

3 )
4◦⇒

x = y.

Sketch of the proof of 6◦ :

A(a, x, an−2
1 ) = b

5◦⇔
A(cn−3

1 , E(a, cn−3
1 ), A(a, x, an−2

1 ), E(an−2
1 )) =

A(cn−3
1 , E(a, cn−3

1 ), b, E(an−2
1 ))

2◦⇔
A(cn−3

1 , E(a, cn−3
1 ), a, A(x, an−2

1 , E(an−2
1 ))) =

A(cn−3
1 , E(a, cn−3

1 ), b, E(an−2
1 ))

(ii)⇔
A(cn−3

1 , E(a, cn−3
1 ), a, x) =

A(cn−3
1 , E(a, cn−3

1 ), b, E(an−2
1 ))

3◦⇔
A(cn−3

1 , E(a, cn−3
1 ), E(cn−3

1 , E(a, cn−3
1 )), x) =

A(cn−3
1 , E(a, cn−3

1 ), b, E(an−2
1 ))

(iii)⇐⇒
x = A(cn−3

1 , E(a, cn−3
1 ), b, E(an−2

1 )).

Finally, considering 2◦, 4◦ and 6◦, by Th.3.4 from Chapter IX, we conclude

that (Q,A) is an n−group. 2

Similarly, one could prove also the following proposition:

1.2. Proposition [Dudek 1995]: Let n ≥ 3, let (Q,A) be an < n − 1, n >

−associative n−groupoid and let E be an (n − 2)−ary operation in Q. In

addition, let for all x ∈ Q, for every sequence an−2
1 over Q and for every

sequence bn−2
1 over Q the following equalities hold

A(E(an−2
1 ), an−2

1 , x) = x and A(x, E(bn−2
1 ), bn−2

1 ) = x.

Then (Q,A) is an n−group.

1.3.Remark: E from 1.1 and from 1.2 is an {1, n}−neutral operation of the

n−group (Q,A). [Cf. Th. 2.6 from Chapter II and Def. 1.1 from Chapter

I.]
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2 (n−2)−neutral operations of (k(n−1)+1)−gro-

upoids

2.1. Definition [Ušan 1998/3]: Let (k, n) ∈ N × (N\{1}), let A be a

(k(n−1)+1)−ary operation in Q and E a mapping of the set Qn−2 into the set

Q. Then: 1) we say that E is a left (n−2)− neutral operation of a (k(n−
1) + 1)−groupoid (Q,A) iff for every

(1)
a 1, . . . ,

(1)
a n−2, . . . ,

(k)
a 1, . . . ,

(k)
a n−2 ∈ Q

the formula

(1)
k∧

i=1
A( E(

(j)

a n−2
1 ),

(j)

a n−2
1

i
j=1 x, E(

(j)

a n−2
1 ),

(j)

a n−2
1

k
j=i+1) = x 2

holds; 2) we say that E is a right (n− 2)−neutral operation of a (k(n−
1) + 1)−groupoid (Q,A) iff for every

(1)
a 1, . . . ,

(a)
a n−2, . . . ,

(k)
a 1, . . . ,

(k)
a n−2 ∈ Q

the formula

(2)
k∧

i=1
A(

(j)

a n−2
1 , E(

(j)

a n−2
1 ) i−1

j=1 , x,
(j)

a n−2
1 , E(

(j)

a n−2
1 ) k

j=i) = x

holds; and 3) we say that E is a (n − 2)−neutral operation of a (k(n −
1) + 1)−groupoid (Q,A) iff E is a left (n − 2)−neutral operation of a

(k(n− 1) + 1)−groupoid (Q,A) and a right (n− 2)−neutral operation of a

(k(n− 1) + 1)−groupoid (Q,A).

2.2. Remark: For n = 2 the formula (1) and the formula (2) reduce,

respectively, to the formulas

(1̂)
k∧

i=1
A(

i
e, x,

k−i
e ) = x and

(2̂)
k∧

i=1
A(

i−1
e , x,

k−i+1
e ) = x;

e = E(∅). Further on the conjuction of the formulas (1̂) and (2̂) for all x ∈ Q

is equivalent with the following formula

(e)
k+1∧
i=1

A(
i−1
e , x,

k−i+1
e ) = x.

2For example, in [Belousov 1972]: {
(i)

a q
p } s

i=t instead of
(i)

a q
p

s
i=t .
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(See, also Def. 1.1 and 2 from Chapter II.)

2.3. Proposition [Ušan 1998/3]: Let n ≥ 3 and let (Q, B) be an n−semigroup

with a {1, n}−neutral operation e. 3 Further on, let k ≥ 2. Then the following

statements hold:

a) (Q,
k

B) is a (k(n− 1) + 1)−group; and

b) e is an (n− 2)−operation of the (k(n− 1) + 1)−groupoid (Q,
k

B).

Proof. 1) By Th. 2.2 from Chapter IX, we conclude that the n−semigroup

(Q, B) is an n−group. Therefore, by 6 from Chapter VI and by Def. 1.1

from Chapter I, we conclude that the statement a) is satisfied.

2) By 1), By Prop. 1.1 from Chapter IV and by 6 from Chapter VI, we

conclude that the statement b) holds.

Sketch of a part of the proof of b) :

i

B(
(j)

a n−2
1 , e(

(j)

a n−2
1 ) i

j=1, x) =

i−1

B (
(j)

a n−2
1 , e(

(j)

a n−2
1 ) i−1

j=1, B(
(i)

a n−2
1 , e(

(i)

a n−2
1 ), x)) =

i−1

B (
(j)

a n−2
1 , e(

(j)

a n−2
1 ) i−1

j=1, x). 2

3See Chapter II and 2.1-IX.
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3 Main proposition

3.1. Theorem [Ušan 1998/3]: Let k ≥ 2, n ≥ 2 and let (Q,A) be a

(k(n−1)+1)−semigroup. Further on, let E be a left (n−2)−neutral operation

of a (k(n−1)+1)−semigroup (Q,A) or a right (n−2)−neutral operation of

a (k(n− 1) + 1)−semigroup (Q,A). Then there exists an n−groupoid (Q,B)

such that the following statements hold:

(i) (Q,B) is an n−semigroup;

(ii) A =
k

B;

(iii) E is a {1, n}−neutral operation of the n−groupoid (Q,B); and

(iv) If n ≥ 3, then (Q,A) is a (k(n− 1) + 1)−group.

[Cf. Chapter II-1.]

Proof. 1) Let E be a right (n − 2)−neutral operation of a (k(n − 1) +

1)−semigroup (Q,A); k ≥ 2, n ≥ 2. Firstly we observe that under the

assumption the following statements hold:

1◦ Let
(j)

a n−2
1 , j ∈ {1, . . . , n−1}, be an arbitrary sequence over Q. Further

on, let for every xn
1 ∈ Q

(a) B(xn
1 )

def
= A(xn

1 ,
(j)

a n−2
1 , E(

(j)

a n−2
1 ) k−1

j=1).

Then for every sequence of sequences
(j)

c n−2
1 , j ∈ {1, . . . , n − 1}, over Q and

for every xn
1 ∈ Q the following equality holds

B(xn
1 ) = A(xn

1 ,
(j)

c n−2
1 , E(

(j)

c n−2
1 ) k−1

j=1).

2◦ For every xn
1 ∈ Q and for every sequence of sequences

(j)

c n−2
1 , j ∈

{1, . . . , n− 1}, over Q the following equality holds
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B(xn
1 ) = A(xn−1

1 ,
(j)

c n−2
1 , E(

(j)

c n−2
1 ) k−1

j=1 , xn).

3◦ (Q,B), where the n−ary operation B in Q is defined by (a) in 1◦, is

an n−semigroup.

4◦ For every x
k(n−1)+1
1 ∈ Q the following equality holds

A(x
k(n−1)+1
1 ) =

k

B(x
k(n−1)+1
1 ).

5◦ For all x ∈ Q, for every sequence an−2
1 and for every sequence bn−2

1 over

Q the following equalities hold

B(x, an−2
1 , E(an−2

1 )) = x and B(bn−2
1 , E(bn−2

1 ), x) = x.

6◦ If n ≥ 3, then (Q,B) is an n−group.

7◦ E is a {1, n}−neutral operation of the (Q,B).

Sketch of the proof of 1◦ :

B(xn
1 )

2.1
=A(B(xn

1 ),
(k)

a n−2
1 , E(

(k)

a n−2
1 ),

(j)

c n−2
1 , E(

(j)

c n−2
1 ) k−1

j=1)
(a)
=

A(A(xn
1 ,

(j)

a n−2
1 , E(

(j)

a n−2
1 ) k−1

j=1),
(k)

a n−2
1 , E(

(k)

a n−2
1 ),

(j)

c n−2
1 , E(

(j)

c n−2
1 ) k−1

j=1) =

A(xn−1
1 , A(xn,

(j)

a n−2
1 , E(

(j)

a n−2
1 ) k

j=1),
(j)

c n−2
1 , E(

(j)

c n−2
1 ) k−1

j=1)
2.1
=

A(xn
1 ,

(j)

c n−2
1 , E(

(j)

c n−2
1 ) k−1

j=1).

Sketch of the proof of 2◦ :

B(xn
1 )

1◦
=A(xn

1 ,
(j)

b n−2
1 , E(

(j)

b n−2
1 ) k−1

j=1)
2.1
=

A(xn−1
1 , A(

(j)

b n−2
1 , E(

(j)

b n−2
1 ) k−1

j=1 , xn, c
n−2
1 , E(cn−2

1 )),
(j)

b n−2
1 , E(

(j)

b n−2
1 ) k−1

j=1) =

A(xn−1
1 ,

(j)

b n−2
1 , E(

(j)

b n−2
1

k−1
j=1 , A(xn, cn−2

1 , E(cn−2
1 )

(j)

b n−2
1 , E(

(j)

b n−2
1 ) k−1

j=1))
2.1
=

A(xn−1
1 , A(

(j)

b n−2
1 , E(

(j)

b n−2
1 ) k−1

j=1 , xn).

The proof of 3◦ :
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Let i be an arbitrary element of the set {1, . . . , n − 1}. Then for every

x2n−1
1 ∈ Q, for every sequence of sequences

(j)

b n−2
1 , j ∈ {1, . . . , k − 1}, over

Q and for every sequence of sequences
(j)

c n−2
1 , j ∈ {1, . . . , k − 1}, over Q the

following equality holds

A(xi−1
1 , A(xi+n−1

i ,
(j)

b n−2
1 , E(

(j)

b n−2
1 ) k−1

j=1), x
2n−1
i+n ,

(j)

c n−2
1 , E(

(j)

c n−2
1 ) k−1

j=1) =

A(xi
1, A(xi+n−1

i+1 ,
(j)

b n−2
1 , E(

(j)

b n−2
1 ) k−1

j=1 , xi+n), x2n−1
i+n+1

(j)

c n−2
1 , E(

(j)

c n−2
1 ) k−1

j=1),

hence, by 1◦ and 2◦, we conclude that for all i ∈ {1, . . . , n− 1} and for every

x2n−1
1 ∈ Q the following equality holds

B(xi−1
1 , B(xi+n−1

i ), x2n−1
i+n ) = B(xi

1, B(xi+n
i+1 ), x2n−1

i+n+1).

Sketch of the proof of 4◦ :

A(x
k(n−1)+1
1 )

2.1
=

A(x
k(n−1)
1 , A(xk(n−1)+1,

(j)

c n−2
1 , E(

(j)

c n−2
1 ) k−1

j=1 ,
(2)

b n−2
1 , E(

(2)

b n−2
1 ))) =

A(x
(k−1)(n−1)
1 , A(x

k(n−1)+1
(k−1)(n−1)+1,

(j)

c n−2
1 , E(

(j)

c n−2
1 ) k−1

j=1),
(2)

b n−2
1 ), E(

(2)

b n−2
1 ))

1◦,2◦
=

A(x
(k−1)(n−1)
1 , B(x

k(n−1)+1
(k−1)(n−1)+1,

(2)

b n−2
1 , E(

(2)

b n−2
1 ))

2.1
=

A(x
(k−1)(n−1)
1 , A(B(x

k(n−1)+1
(k−1)(n−1)+1),

(j)

c n−2
1 , E(

(j)

c n−2
1 ) k−1

j=1 ,
(1)

b n−2
1 , E(

(1)

b n−2
1 )),

(2)

b n−2
1 ,

E(
(2)

b n−2
1 )) =

A(x
(k−2)(n−1)
1 , A(x

(k−1)(n−1)
(k−2)(n−1)+1, B(x

k(n−1)+1
(k−1)(n−1)+1),

(j)

c n−2
1 , E(

(j)

c n−2
1 ) k−1

j=1),
(t)

b n−2
1 , E(

(t)

b n−2
1 ) 2

t=1)
1◦,2◦
=

A(x
(k−2)(n−1)
1 , B(x

(k−1)(n−1)
(k−2)(n−1)+1, B(x

k(n−1)+1
(k−1)(n−1)+1)),

(t)

b n−2
1 , E(

(t)

b n−2
1 ) 2

t=1)
6.3V I
==

A(x
(k−2)(n−1)
1 ,

2

B(x
k(n−1)+1
(k−2)(n−1)+1),

(t)

b n−2
1 , E(

(t)

b n−2
1 ) 2

t=1).
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So, for k = 2 we have:

A(x2n−1
1 ) = A(

2

B(x2n−1
1 ),

(t)

b n−2
1 , E(

(t)

b n−2
1 ) 2

t=1)
2.1
=

2

B(x2n−1
1 ).

The proof of 5◦

By Def. 2.1, we conclude that for all x ∈ Q, for every sequence an−2 over

Q and for every sequence of sequences
(j)

c n−2
1 , j ∈ {1, . . . , k − 1}, over Q the

following equalities hold

A(x, an−2
1 , E(an−2

1 ),
(j)

c n−2
1 , E(

(j)

c n−2
1 ) k−1

j=1) = x and

A(an−2
1 , E(an−2

1 ), x
(j)

c n−2
1 , E(

(j)

c n−2
1 ) k−1

j=1) = x,

whence, by 1◦, we conclude that for all x ∈ Q and for every sequence an−2
1

over Q the following equalities hold

B(x, an−2
1 , E(an−2

1 )) = x and B(an−2
1 , E(an−2

1 ), x) = x.

For n = 2 this equalities reduce to the equalities

B(x, E(∅)) = x and B(E(∅), x) = x.

The proof of 6◦ :

By 3◦, by 5◦ and by Proposition 1.1.

The proof of 7◦ :

a) For n = 2 : by 5◦.

b) For n ≥ 3 : by 6◦, by Th. 2.6 from Chapter II, and by Def. 1.1 from

Chapter I.

Finally: 1) By 3◦, by 4◦ and by 7◦, we conclude that the statements

(i)− (iii) hold; and 2) By 4◦ and by 6◦, we conclude that the statement (iv)

holds.

Similarly, it is posible to prove also the case: E is a left (n− 2)−neutral

operation of the (k(n− 1) + 1)−semigroup (Q,A). 2
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Chapter XIII

ON LEFT (RIGHT) DIVISION IN n−GROUPS

1 n−groups as n−groupoids with laws

1.1. Theorem [Ušan 1997/4]: Let n ≥ 2 and let (Q,A) be an n−group.

Furthermore, let B =−1A, where

(o) −1A(x, zn−2
1 , y) = z

def⇔A(z, zn−2
1 , y) = x

for all x, y, z ∈ Q and for every sequence zn−2
1 over Q.1 Then the following

laws

(i) B(B(x, z, bn−2
1 ), B(y, an−2

1 , z), an−2
1 ) = B(x, y, bn−2

1 ) and

(ii) B(a, cn−2
1 , B(B(B(u, cn−2

1 , u), cn−2
1 , b), cn−2

1 , B(B(v, cn−2
1 , v), cn−2

1 , a))) = b

hold in the n−groupoid (Q,B).

Proof. Let n ≥ 2 and let (Q,A) be an n−group, −1 its inverse operation

[Chapter III-1] and e its {1, n}−neutral operation [Chapter II-2].

The proof of (i) :

a) By (o), we have

(a) A(y, an−2
1 , z) = u ⇔−1A(u, an−2

1 , z) = y and

(b) A(x, u, bn−2
1 ) = v ⇔−1A(v, u, bn−2

1 ) = x

for all x, y, z, u, v ∈ Q, for every sequence an−2
1 over Q and for every sequence

bn−2
1 over Q.

b) By Def. 1.1 from Chapter I, by (o), by (a) and by (b), we conclude

that for all x, y, z, u, v ∈ Q, for every sequence an−2
1 over Q and for every

sequence bn−2
1 over Q the following series of implications holds

1 −1A is a left division in (Q,A).
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A(A(x, y, an−2
1 ), z, bn−2

1 ) = A(x,A(y, an−2
1 , z), bn−2

1 )
(o)⇒

−1A(A(x,A(y, an−2
1 , z), bn−2

1 ), z, bn−2
1 ) = A(x, y, an−2

1 )
(a)⇒

−1A(A(x, u, bn−2
1 ), z, bn−2

1 ) = A(x,−1A(u, an−2
1 , z), an−2

1 )
(b)⇒

−1A(v, z, bn−2
1 ) = A(−1A(v, u, bn−2

1 ),−1A(u, an−2
1 , z), an−2

1 )
(o)⇒

−1A(v, u, bn−2
1 ) =−1A(−1A(v, z, bn−2

1 ),−1A(u, an−2
1 , z), an−2

1 ).

Whence, by the substitution B =−1A, we conclude that the following law

B(B(x, z, bn−2
1 ), B(y, an−2

1 , z), an−2
1 ) = B(x, y, bn−2

1 )

holds in the n−groupoid (Q,B).

The proof of (ii) :

a) By Th. 1.3 from Chapter III and by (o), we have

(c) (cn−2
1 , u)−1 =−1A(−1A(z, cn−2

1 , z), cn−2
1 , u)

for all u, z ∈ Q and for every sequence cn−2
1 over Q.

[(α) A(e(cn−2
1 ), cn−2

1 , z)
1.3III
==z

(o)⇔e(cn−2
1 ) =−1A(z, cn−2

1 , z);

(β) A((cn−2
1 , u)−1, cn−2

1 , u)
1.3III
==e(cn−2

1 )
(o)⇔ −1A(e(cn−2

1 ), cn−2
1 , u) = (cn−2

1 , u)−1(α)⇔
−1A(−1A(z, cn−2

1 , z), cn−2
1 , u) = (cn−2

1 , u)−1.]

b) By Def. 1.1 from Chapter I, by Th. 1.3 from Chapter III and by

(o), we conclude that for all a, b, u, v, x ∈ Q and for every sequence an−2
1 over

Q the following series of equivalences holds
−1A(a, cn−2

1 , x) = b
(o)⇔

A(b, cn−2
1 , x) = a

1.1I⇔
A((cn−2

1 , b)−1, cn−2
1 , A(b, cn−2

1 , x)) = A((cn−2
1 , b)−1, cn−2

1 , a)
1.3III⇔

x = A((cn−2
1 , b)−1, cn−2

1 , a)
1.1I⇔

A(x, cn−2
1 , (cn−2

1 , a)−1) = A(A((cn−2
1 , b)−1, cn−2

1 , a), cn−2
1 , (cn−2

1 , a)−1)
1.3III⇔

A(x, cn−2
1 , (cn−2

1 , a)−1) = (cn−2
1 , b)−1 (o)⇔

−1A((cn−2
1 , b)−1, cn−2

1 , (cn−2
1 , a)−1) = x

(c)⇔
−1A(−1A(−1A(u, cn−2

1 , u), cn−2
1 , b), cn−2

1 ,−1A(−1A(v, cn−2
1 , v), cn−2

1 , a)) = x,

i.e.
−1A(a, cn−2

1 , x) = b ⇔
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−1A(−1A(−1A(u, cn−2
1 , u), cn−2

1 , b), cn−2
1 ,−1A(−1A(v, cn−2

1 , v), cn−2
1 , a)) = x.

Whence, by the substitution B =−1A, we conclude that

B(a, cn−2
1 , B(B(B(u, cn−2

1 , u), cn−2
1 , b), cn−2

1 , B(B(v, cn−2
1 , v), cn−2

1 , a))) = b

holds in the n−groupoid (Q, B). 2

1.2. Theorem [Ušan 1997/4]: Let n ≥ 2 and let (Q,B) be an n−groupoid.

Let also the following laws

(i) B(B(x, z, bn−2
1 ), B(y, an−2

1 , z), an−2
1 ) = B(x, y, bn−2

1 ) and

(ii) B(a, cn−2
1 , B(B(B(u, cn−2

1 , u), cn−2
1 , b), cn−2

1 , B(B(v, cn−2
1 , v), cn−2

1 , a))) = b

hold in the n−groupoid (Q,B). Then, there is an n−group (Q, A) such that
−1A = B.

Proof. By (ii), we conclude that the following statement holds:

1◦ For every an
1 ∈ Q there is at least one x ∈ Q such that B(an−1

1 , x) =

an.

Furthermore, the following statements hold.

2◦ (∀a ∈ Q)(∀z ∈ Q)(∀ci ∈ Q)n−2
1 B(a,B(z, cn−2

1 , z), cn−2
1 ) = a.

3̂◦ For every x, y, an−1
1 ∈ Q the following implication holds

B(x, an−1
1 ) = B(y, an−1

1 ) ⇒ x = y.

3◦ For every an
1 ∈ Q there is exactly one x ∈ Q such that B(x, an−1

1 ) =

an.

4◦ There exists an n−ary operation −1B in Q such that for all x, y ∈ Q

and for every sequence an−1
1 over Q

(o) −1B(x, an−1
1 ) = y ⇔ B(y, an−1

1 ) = x.

5̂◦ For every x, y, an−1
1 ∈ Q the following implication holds

−1B(x, an−1
1 ) =−1 B(y, an−1

1 ) ⇒ x = y.

5◦ For every an
1 ∈ Q there is exactly one y ∈ Q such that −1B(y, an−1

1 ) =

an.

6◦ For every an
1 ∈ Q there is at least one x ∈ Q such that the following

equality holds −1B(an−1
1 , x) = an.

7◦ The < 1, 2 > −associative law holds in (Q,−1 B).

8◦ (Q,−1 B) is an n−semigroup.
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The proof of 2◦ :

1) n ≥ 3 : Putting z = y in (i), we obtain

(a) B(B(x, y, bn−2
1 ), B(y, an−2

1 , y), an−2
1 ) = B(x, y, bn−2

1 ).

By 1◦, we have

(b) (∀x ∈ Q)(∀y ∈ Q)(∀a ∈ Q)(∀bi ∈ Q)n−3
1 (∃bn−2 ∈ Q)B(x, y, bn−2

1 ) = a.

Finally, by (a) and by (b), we conclude that the statement 2◦ for n ≥ 3

holds.

2) n = 2 : For n = 2 (i) is reduced to

(̂i) B(B(x, z), B(y, z)) = B(x, y).

Putting z = y in (̂i), we obtain

(â) B(B(x, y), B(y, y)) = B(x, y).

By 1◦, we have

(b̂) (∀x ∈ Q)(∀a ∈ Q)(∃y ∈ Q)B(x, y) = a.

By (â) and (b̂), we obtain

(ĉ) (∀x ∈ Q)(∀a ∈ Q)(∃y ∈ Q)B(a,B(y, y)) = a.

In addition, by 1◦, we have

(d̂) (∀y ∈ Q)(∀u ∈ Q)(∃c ∈ Q)y
1◦
=B(u, c).

Whence, by (̂i), we obtain

B(y, y)
(d̂)
=B(B(u, c), B(u, c))

(̂i)
=B(u, u),

i.e.

(ê) B(y, y) = B(u, u)

for all y, u ∈ Q.

Finally, by (ĉ) and by (ê), we obtain

(∀a ∈ Q)(∀u ∈ Q)a = B(a,B(u, u)).

Sketch of the proof of 3̂◦ :

B(x, a, bn−2
1 ) = B(x, a, bn−2

1 ) ⇒
B(B(x, a, bn−2

1 ), B(B(v, bn−2
1 , v), an−2

1 , a), an−2
1 ) =

B(B(x, a, bn−2
1 ), B(B(v, bn−2

1 , v), an−2
1 , a), an−2

1 )
(i)⇒

B(x,B(v, bn−2
1 , v), bn−2

1 ) = B(x,B(v, bn−2
1 , v), bn−2

1 )
2◦⇒
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x = x. [In (i) : a = z, B(v, bn−2
1 , v) = y.]

Sketch of the proof of 3◦ :

B(x, a, bn−2
1 ) = b

3̂◦⇐⇒
B(B(x, a, bn−2

1 ), B(B(v, bn−2
1 , v), an−2

1 , a), an−2
1 ) =

B(b, B(B(v, bn−2
1 , v), an−2

1 , a), an−2
1 )

(i)⇐⇒
B(x,B(v, bn−2

1 , v), bn−2
1 ) = B(b, B(B(v, bn−2

1 , v), an−2
1 , a), an−2

1 )
2◦⇐⇒

x = B(b, B(B(v, bn−2
1 , v), an−2

1 , a), an−2
1 ),

i.e.

B(x, a, bn−2
1 ) = b ⇔ x = B(b, B(B(v, bn−2

1 , v), an−2
1 , a), an−2

1 ),

whence, by 3̂◦, we conclude that the statement 3◦ holds.

The proof of 4◦ : by 3◦.

The proof of 5̂◦ :

By (o), we obtain
−1B(x, an−1

1 ) = u ⇔ B(u, an−1
1 ) = x and

−1B(y, an−1
1 ) = v ⇔ B(v, an−1

1 ) = y

for all x, y, u, v, an−1
1 ∈ Q.

Whence, we have
−1B(x, an−1

1 ) =−1B(y, an−1
1 ) ⇒ x = y

for all x, y, an−1
1 ∈ Q.

The proof of 5◦ :

By (o), we obtain
−1B(x, an−1

1 ) = b ⇔ x = B(b, an−1
1 )

for all x, b, an−1
1 ∈ Q. Whence, by 5̂◦, we conclude that the statement 5◦

holds.

The proof of 6◦ :

By 4◦, we obtain
−1B(a, an−2

1 , x) = b ⇔ B(b, an−2
1 , x) = a.

for all a, b, x ∈ Q and for every sequence an−2
1 over Q. Whence, by 1◦, we

conclude that the statement 6◦ holds.
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Sketch of the proof of 7◦ :

a) By (o), we have

(a) B(v, u, bn−2
1 ) = x ⇔−1B(x, u, bn−2

1 ) = v and

(b) B(u, an−2
1 , z) = y ⇔−1B(y, an−2

1 , z) = u

for all x, y, z, u, v ∈ Q, for every sequence an−2
1 over Q and for every sequence

bn−2
1 over Q.

b) The following series of implications holds

B(u, v, bn−2
1 ) = B(B(v, z, bn−2

1 ), B(u, an−2
1 , z), an−2

1 )
(o)

=⇒
B(v, z, bn−2

1 ) =−1B(B(u, v, bn−2
1 ), B(u, an−2

1 , z), an−2
1 )

(a)
=⇒

B(−1B(x, u, bn−2
1 ), z, bn−2

1 ) =−1B(x,B(u, an−2
1 , z), an−2

1 )
(b)

=⇒
B(−1B(x,−1B(y, an−2

1 , z), bn−2
1 ), z, bn−2

1 ) =−1B(x, y, an−2
1 )

(o)
=⇒

−1B(−1B(x, y, an−2
1 ), z, bn−2

1 ) =−1B(x,−1B(y, an−2
1 , z), bn−2

1 ).

The proof of 8◦ :

a) For n = 2, by 7◦. b) For n ≥ 3, by 7◦ and by Prop. 2.1 from Chapter III.

Finally, by 1◦, 5◦, 8◦ and by Th. 3.1 (or Th. 3.2) from Chapter III, we

conclude that Th. 1.2 holds. 2

1.3. Remark: Similarly, the n−group (Q,A) can be described by the n−gro-

upoid (Q,A−1). [A−1(x, an−2
1 , y) = z

def⇐⇒ A(x, an−2
1 , z) = y; A−1 is a right

division in n−group (Q,A).]

2 One proposition of the n−subgroups

2.1. Theorem: Let (Q,A) be an n−group, −1 its inverse operation and

n ≥ 2. Also, let H ∈ P (Q)\{∅}. Then (H,A) is an n−subgroup of the

n−group (Q,A) iff for all x, y ∈ H and for every sequence an−2
1 over H the

following statement holds

A(x, an−2
1 , (an−2

1 , y)−1) ∈ H.

Proof. By Th. 1.1, by Th. 1.2 and by Prop. 2.1 from VIII [:−1A(x, an−2
1 , y) =

A(x, an−2
1 , (an−2

1 , y)−1)]. 2
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2.2. Remark: Th. 2.1 for n = 2 is a well known proposition.

3 TS − n−groups as n−groupoids with laws

3.1. Definition: Let (Q,A) be an n−quasigroup and n ≥ 2. Also let α be a

permutation in the set {1, 2, . . . , n + 1}. Moreover, let

Aα(xn
1 ) = an+1

def⇔A(xα(1), . . . , xα(n)) = xα(n+1)

for all xn+1
1 ∈ Q. We say that (Q, A) is a totally symmetric n−quasigroup

[briefly: TS-n-quasigroup] iff for any permutation α on {1, 2, . . . , n + 1} we

have Aα = A. In the case when α = (1, n + 1) instead of Aα we have −1A.

Similarly in the case α = (n, n + 1) instead of Aα we write A−1.

3.2. Proposition [Ušan 1999/6]: Let n ≥ 2 and let (Q,B) be a TS −
n−group. Then the following laws

(i) B(B(x, z, bn−2
1 ), B(y, an−2

1 , z), an−2
1 ) = B(x, y, bn−2

1 ),

(ii) B(a, cn−2
1 , B(B(B(u, cn−2

1 , u), cn−2
1 , b), cn−2

1 , B(B(v, cn−2
1 , v), cn−2

1 , v), cn−2
1 , a))) =

b,

(iii) B(x, an−2
1 , y) = B(x, an−2

1 , B(B(y, an−2
1 , y), an−2

1 , y)) = b and

(iv) B(x, y, an−2
1 ) = B(y, x, an−2

1 )

hold in the n−groupoid (Q,B).

Proof. a) By −1B = B (Def. 3.1), and by Th. 1.1, we have (i) and (ii).

b) By −1B = B and by Prop. 2.1− (4R) from Chapter VIII [:A(x, an−2
1 , y) =

−1A(x, an−2
1 ,−1A(−1A(y, an−2

1 , y), an−2
1 , y)], we obtain (iii). c) By Def.3.1, we

have also (iv). 2

3.3. Theorem: [Ušan 1999/6]: Let n ≥ 2 and let (Q,B) be an n−groupoid.

Let also the laws (i)− (iv) hold. Then (Q,B) is a TS-n-group.

Proof. Firstly we observe that under the assumption the following state-
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ments hold:

◦1 There is an n−group (Q,A) such that −1A = B;

◦2 −1B = A;

◦3 −1B = B;

◦4 (Q,B) is an n−group;

◦5 For all x ∈ Q and for every sequence an−2
1 over Q the following equality

holds (an−2
1 , x)−1 = x, where −1 is an inverse operation in the n−group

(Q, B);

◦6 B−1 = B;

◦7 For all x, y ∈ Q and for every sequence an−2
1 over Q the equality

B(x, an−2
1 , y) = B(y, an−2

1 , x) holds;

◦8 Let n ≥ 3. Then, for all xn
1 ∈ Q and for all permutation α on {1, . . . , n}

the following equality holds

B(xn
1 ) = B(xα(1), . . . , xα(n)); and

◦9 Let n ≥ 3. Then, for all xn
1 ∈ Q and for all i ∈ {2, . . . , n − 1} the

equality B(i) = B holds, where

(E) B(i)(ai−1
1 , x, an−1

i ) = y
def⇔B(ai−1

1 , y, an−1
i ) = x.

The proof of ◦1 : By (i), (ii) and by Th. 1.2.

The proof of ◦2 : −1B
◦1
= −1(−1A) = A.

The proof of ◦3 :

By ◦1,◦ 2 and by Prop. 2.1− (4l) from Chapter VIII, we have

(iii) −1B(x, an−2
1 , y) = B(x, an−2

1 , B(B(y, an−2
1 , y), an−2

1 , y))

for all x, y ∈ Q and for every sequence an−2
1 over Q. By (iii) and by (iii), we

obtain −1B = B.

The proof of ◦4 :

Firstly, by ◦2 and ◦3, we have A = B. Whence, by ◦1, we conclude that
◦4 holds.
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The proof of ◦5 :

By ◦3,◦ 4 and by Prop. 2.1− (1l) from Chapter VIII, we have

B(x, an−2
1 , y) = B(x, an−2

1 , (an−2
1 , y)−1)

for all x, y ∈ Q and for every sequence an−2
1 over Q. Whence, by Def. 1.1

from Chapter I, we obtain

(∀y ∈ Q)(∀ai ∈ Q)n−2
1 (an−2

1 , y)−1 = y.

The proof of ◦6 :

By ◦4,◦ 5 and by Prop. 2.1− (1r) from Chapter VIII.

The proof of ◦7 :

Firstly:

(R) B−1(x, an−2
1 , y) = z

def⇐⇒B(x, an−2
1 , z) = y

for all x, y, z ∈ Q and for every sequence an−2
1 over Q.

Further:
B(x, an−2

1 , y) = z
◦3⇐⇒−1B(x, an−2

1 , y) = z
(0)⇐⇒B(z, an−2

1 , y) = x
◦6⇐⇒B−1(z, an−2

1 , y) = x
(R)⇐⇒B(z, an−2

1 , x) = y
(0)⇐⇒−1B(y, an−2

1 , x) = z
◦3⇐⇒B(y, an−2

1 , x) = z.

Remark: For n = 2 B(x, an−2
1 , y) = B(y, an−2

1 , x) is the law (iv).

The proof of ◦8 :

Let (Q, {·, ϕ, b}) be an arbitrary nHG−algebra associated to the n−group

(Q,B) [Chapter IV-2]. By Th. 4.1 from Chapter IV, there is a sequence

an−2
1 over Q such that

(M) x · y = A(x, an−2
1 , y) and

(A) ϕ(x) = A(e(an−2
1 ), x, an−2

1 ),

where e is a {1, n}−neutral operation of the n−group (Q,B).

By (M) and by ◦7, we have

(K) (∀x ∈ Q)(∀y ∈ Q)x · y = y · x.
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In addition, by (A) and by (iv), we obtain

(I) (∀x ∈ Q)ϕ(x) = x.

Finally, by (K), by (I) and by Def. 2.3 from IV, we conclude that the

statement ◦8 holds.

Sketch of the proof of ◦9 :

B(i)(ai−1
1 , x, an−1

i ) = y
(E)⇐⇒B(ai−1

1 , y, an−1
i ) = x

◦8⇐⇒B(y, ai−1
1 , an−1

i ) = x
(0)⇐⇒−1B(x, ai−1

1 , an−1
i ) = y

◦3⇐⇒B(x, ai−1
1 , an−1

i ) = y
◦8⇐⇒B(ai−1

1 , x, an−1
i ) = y.

Finally: 1) By ◦4,◦ 3,◦ 6 and by ◦7, we conclude that Th.3.3 for n = 2

holds; and 2) By ◦4,◦ 3,◦ 6,◦ 8 and by ◦9, we conclude that Th. 3.3 for n ≥ 3

also holds. [See remark in the proof of ◦7] 2

4 Remarks

4.1. A variety of groups of the type < 2 > has been considered in [Higman,

Neuman 1952] [See, also [Cohn 1968] and [Kurosh 1967]]. The investigation

of this paper was extended in [Tasić 1988] for groups, for rings and, more

generally, for Ω−groups.

4.2. In [Furnstenberg 1955] a group is described as a groupoid (Q,B)

which satisfies one law (i.e. our (i) for n = 2) and in which the equality

B(a, x) = b has at least one solution x for each a, b ∈ Q.

4.3. In [Ušan, Galić 2000] a class of (m,n)−rings with left and right zero

has been described as a variety of algebras of type < 3m + n − 5, 0 > . In

[Sorkin 1957] rings [(2, 2)−rings ] have been described as 3-groupoids with

one law.
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Chapter XIV

ON SEMIINVARIANT (INVARIANT)

n−SUBGROUP

1 Auxiliary propositions

1.1. Proposition [Ušan 1994]: Let (Q,A) be an n−group, −1 its inverse

operation and n ≥ 2. Then for all a, b ∈ Q and for every sequence cn−2
1 over

Q the following equality holds

(cn−2
1 , A(a, cn−2

1 , b))−1 = A((cn−2
1 , b)−1, cn−2

1 , (cn−2
1 , a)−1).

Proof. Let e be an {1, n}−neutral operation of the n−group (Q,A). Also,

let a and b be arbitrary elements of the set Q and cn−2
1 an arbitrary sequence

over Q. Then the following sequence of equivalences holds

A(A(a, cn−2
1 , b), cn−2

1 , x) = e(cn−2
1 )

1.1I⇐⇒
A((cn−2

1 , A(a, cn−2
1 , b))−1, cn−2

1 , A(A(a, cn−2
1 , b), cn−2

1 , x)) =

A((cn−2
1 , A(a, cn−2

1 , b))−1, cn−2
1 , e(cn−2

1 ))
1.3III⇐⇒

x = (cn−2
1 , A(a, cn−2

1 , b))−1,

and hence (cn−2
1 , A(a, cn−2

1 , b))−1 is a solution of the equation

(α) A(A(a, cn−2
1 , b), cn−2

1 , x) = e(cn−2
1 )

(for the unknown x). With regard to this, for every x ∈ Q the following

sequence of equivalences holds

A(A(a, cn−2
1 , b), cn−2

1 , x) = e(cn−2
1 )

1.1I⇐⇒
A(a, cn−2

1 , A(b, cn−2
1 , x)) = e(cn−2

1 )
1.1I⇐⇒

A((cn−2
1 , a)−1, cn−2

1 , A(a, cn−2
1 , A(b, cn−2

1 , x))) =

A((cn−2
1 , a)−1, cn−2

1 , e(cn−2
1 ))

1.3III⇐⇒
A(b, cn−2

1 , x) = (cn−2
1 , a)−1 1.1I⇐⇒

A((cn−2
1 , b)−1, cn−2

1 , A(b, cn−2
1 , x)) = A((cn−2

1 , b)−1, cn−2
1 , (cn−2

1 , a)−1)
1.3III⇐⇒
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x = A((cn−2
1 , b)−1, cn−2

1 , (cn−2
1 , a)−1),

and hence we have

A(A(a, cn−2
1 , b), cn−2

1 , x) = e(cn−2
1 ) ⇐⇒

x = A((cn−2
1 , b)−1, cn−2

1 , (cn−2
1 , a)−1).

Thereby we conclude that A((cn−2
1 , b)−1, cn−2

1 , (cn−2
1 , a)−1) is also a solution

of the equation (α). 2

1.2. Proposition: Let (Q,A) be an n−group, −1 its inverse operation and

n ≥ 2. Then for all x ∈ Q and for every sequence an−2
1 over Q the following

equality holds

(an−2
1 , (an−2

1 , x)−1)−1 = x.

Proof. By Th. 1.3 Chapter III, for all x ∈ Q and for every sequence an−2
1

over Q the following equalities hold

((an−2
1 , x)−1, an−2

1 , x) = e(an−2
1 ) and

((an−2
1 , x)−1, an−2

1 , (an−2
1 , (an−2

1 , x)−1)−1) = e(an−2
1 ),

whence, by Def. 1.1 from I, we conclude that the Prop.1.2 holds. 2

1.3. Proposition: Let (Q,A) be an n−group, −1 its inverse operation and

n ≥ 2. Then for all x, y ∈ Q and for every sequence cn−2
1 over Q the following

equality holds

A((cn−2
1 , x)−1, cn−2

1 , y) = cn−1 ⇐⇒ y = A(x, cn−1
1 ).

Sketch of the proof.

A((cn−2
1 , x)−1, cn−2

1 , y) = cn−1
1.1I⇐⇒

A(x, cn−2
1 , A((cn−2

1 , x)−1, cn−2
1 , y)) = A(x, cn−2

1 , cn−1)
1.1I⇐⇒

A(A(x, cn−2
1 , (cn−2

1 , x)−1), cn−2
1 , y) = A(x, cn−1

1 )
1.3III⇐⇒

A(e(cn−2
1 ), cn−2

1 , y) = A(x, cn−1
1 )

1.3III⇐⇒
y = A(x, cn−1

1 ). 2
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2 Main proposition

2.1. Definition [Rusakov 1992]: Let n ≥ 2, (Q, A) be an n−group, and

(H, A) its n−subgroup. Then: (a) (H, A) is a semiinvariant n−subgroup

of the n−group (Q,A) iff the following formula holds

(∀x ∈ Q)(∀hi ∈ H)n−2
1 (∀h ∈ H)(∃h ∈ H)A(h, hn−2

1 , x) = A(x, hn−2
1 , h);

and (b) (H, A) is an invariant (normal) n−subgroup of the n−group (Q,A)

iff (H, A) is a semiinvariant n−subgroup of the n−group (Q,A) and for all

x ∈ Q the following equality holds

A(x,
n−1

H ) = A(H, x,
n−2

H ).

2.2. Theorem: [Ušan, Žǐzović 1999/1] Let (Q,A) be an n−group, −1 its

inverse operation, (H, A) its semiinvariant n−subgroup and n ≥ 2. Also let

(1) xθy
def⇐⇒(∃hi ∈ H)n−2

1 (∃h ∈ H)A((hn−2
1 , x)−1, hn−2

1 , y) = h

for all x, y ∈ Q. Then, θ is a congruence on (Q,A).

Proof. Firstly, by (H, A) is an n−subgroup of the n−group (Q,A), and

by Th. 3.1 (3.4 − (ai)) from Chapter III, we conclude that the following

statements hold:

1◦ For every sequence hn−2
1 over H, e(hn−2

1 ) ∈ H [for n = 2 : e(∅) ∈ H];

2◦ For all hn−1
1 ∈ H, (hn−1

1 )−1 ∈ H; and

3◦ For all hn
1 ∈ H, A(hn

1 ) ∈ H.

In addition, we observe that under the assumptions the following state-

ments hold:
◦1 θ is a reflexive relation;
◦2 θ is a symmetric relation;
◦3 θ is a transitive relation; and
◦4 For all a, b, xn−1

1 ∈ Q and for every i ∈ {1, . . . , n} the following im-

plication holds

a θ b ⇒ A(xi−1
1 , a, xn−1

i )θA(xi−1
1 , b, xn−1

i ).

The proof of ◦1 :
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By (1) and by Th. 1.3 from Chapter III, we have

xθx ⇔ (∃hi ∈ H)n−2(∃h ∈ H)e(hn−2
1 ) = h

for all x ∈ Q. Whence, by 1◦ [ (∀hi ∈ H)n−2
1 (∃h ∈ H)e(hn−2

1 ) = h], we

conclude that the statement ◦1 holds.

The proof of ◦2 :

By Prop. 1.1 and by Prop. 1.2, we conclude that the following series of

implications holds

A((hn−2
1 , x)−1, hn−2

1 , y) = hn−1 ⇒
(hn−2

1 , A((hn−2
1 , x)−1, hn−2

1 , y))−1 = (hn−1
1 )−1 1.1

=⇒
A((hn−2

1 , y)−1, hn−2
1 , (hn−2

1 , (hn−2
1 , x)−1)−1) = (hn−1

1 )−1 1.2
=⇒

A((hn−2
1 , y)−1, hn−2

1 , x) = (hn−1)
−1

for all hn−1
1 ∈ H and for every x, y ∈ Q. Whence, by 2◦ and by (1), we

conclude that the ◦2 holds.

The proof of ◦3 :

a) By Prop. 1.3, we have

A((hn−2
1 , x)−1, hn−2

1 , y) = hn−1 ⇔ y = A(x, hn−1
1 ) and

A((h
n−2

1 , y)−1, h
n−2

1 , z) = hn−1 ⇔ z = A(y, h
n−1

)

for all x, y, z ∈ Q, for every sequence hn−1
1 over H and for every sequence

hn−1 over H.

b) The following series of implications also holds

y = A(x, hn−1
1 ) ∧ z = A(y, h

n−1

1 ) ⇒
z = A(A(x, hn−1

1 ), h
n−1

1 ) ⇒
z = A(x, hn−2

1 , A(hn−1, h
n−1

1 ))

for all x, y, z ∈ Q and for every hn−1
1 , h

n−1

1 ∈ H.

Finally, by a), b), 3◦ and by (1), we conclude that ◦3 holds.

The proof of ◦4 :

Firstly, by Prop. 1.3 and by (1), we obtain

(1) aθb ⇔ (∃hi ∈ H)n−1
1 b = A(a, hn−1

1 )
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for all a, b ∈ Q.

In addition, by (1) and by Def. 2.1− (a), we conclude that the following

series of equalities holds

A(xi−1
1 , b, xn−1

1 )
(1)
=A(xi−1

1 , A(a, hn−1
1 ), xn−1

i )
1.1I
= A(xi−1

1 , a, A(hn−1
1 , xi), x

n−1
i+1 )

2.1
=A(xi−1

1 , a, A(xi, h
n−1
2 , h1), x

n−1
i+1 )

−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−
= A(A(xi−1

1 , a, xn−1
i ), hn−1

n−i+1, hn−1, . . . , h1).

Whence, by (1) and by ◦2, we conclude that for all a, b ∈ Q, for all i ∈
{1, . . . , n} and for every xn−1

1 ∈ Q the following implication holds

aθb ⇒ A(xi−1
1 , a, xn−1

i )θA(xi−1
1 , b, xn−1

i ).

Finally, by ◦1−◦ 4, we conclude that Th. 2.2 holds. 2

2.3. Remark: For n ≥ 3 there exists an n−group (Q,A) together with its

congruence relation θ, such that for all Ct ∈ Q/θ the following statement

holds: (Ct, A) is not an n−subgroup of the n− group (Q,A). Cf. 5.1-5.4

from Chapter VI.
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Chapter XV

SOME OTHER PROPERTIES OF n−GROUPS AND

CLOSE OPERATIONS

1 On power in n−groups

1.1. Definition [Ušan 1999/2]: Let n ≥ 2. Let (Q,A) be an n−group, e

its {1, n}−neutral operation and −1 its inverse operation. Then, we say that

am (m ∈ Z) is the m−th power of the element a in (Q,A) iff

(1) a1def
= a;

(2) ak+1def
= A(ak,

n−2
a , a), k ≥ 1;

(3) a◦
def
= e(

n−2
a ); and

(4) a−kdef
= (

n−2
a , ak)−1, k ≥ 1.

1.2. Remark: For n = 2, the conditions (1)-(4) reduce to the conditions

(1̂) a1def
= a;

(2̂) ak+1def
= A(ak, a), k ≥ 1;

(3̂) a◦
def
= e[= e(∅)]; and

(4̂) a−kdef
= (ak)−1, k ≥ 1.

Let n ≥ 3, (Q,A) be an n−group, −1 its inverse operation and e its

{1, n}−neutral operation. Let also a be an arbitrary element of the set Q

and for all x, y ∈ Q let

(5) x2y
def
= A(x,

n−2
a , y),

(6) x−1def
= (

n−2
a , x)−1 and
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(7) e2
def
= e(

n−2
a ).

Then, (Q, 2) is a group with the inverse operation −1 and the neutral element

e2. By the convention (5)-(7), the conditions (1)-(4) can be formulated in the

following way:

(1) a1 = a;

(2) ak+1 = ak2a, k ≥ 1;

(3) a◦ = e2;and

(4) a−k = (ak)−1, k ≥ 1.

Hence, the following proposition is fulfilled:

1.3. Theorem [Ušan 1999/2]: Let n ≥ 3, (Q, {A,−1 , e}) be an n−group

as algebra of the type < n, n − 1, n − 2 > [Chapter III], a be an arbitrary

element from Q and (Q, {2,−1 , e2}) the group defined by (5)-(7). Let, also,

Z be the set of all integers. Then: am (m ∈ Z) is the m−th power of the

element a in the n−group (Q, {A,−1 , e}) iff am is the m−th power of a in

the group (Q, {2,−1 , e2}).
1.4. Theorem [Ušan 1999/2]: Let n ≥ 2, (Q, {A,−1 , e}) be an n−group

as an algebra of the type < n, n− 1, n− 2 >, a be an arbitrary element from

Q. Let, also, Z be the set of all integers. Then for every α, α1, . . . , αn ∈ Z

the following equalities hold

(8) A(aα1 , . . . , aαn) = a

n∑
i=1

αi+2−n

(9) (aα1 , . . . , aαn−2 , aα)−1 = a
−α−2(

n−2∑
i=1

αi+2−n)

(10) e(aα1 , . . . , aαn−2) = a
−

n−2∑
i=1

αi+n−2

.

Proof. 1) Let a be an arbitrary element of the set Q and for all x, y ∈ Q let

x2y
def
= A(x,

n−2
a , y); [(5)];

(11) ϕ2(x)
def
= A(e(

n−2
a ), x,

n−2
a ); and
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(12) b2
def
= A(

n

e(
n−2
a )

∣∣∣).
Whence, by Th. 3.1 from Chapter IV, we conclude that the (Q, {2, ϕ2, b2})
is an nHG−algebra associated to the n−group (Q,A).

2) We prove that under the assumption the following statements hold

1◦ For every m ∈ Z we have ϕ2(am) = am;

2◦ b2 = a−(n−2); and

3◦ For all a, x ∈ Q the following equality holds

(
n−2
a , x)−1 = ((ϕ2(a)2 . . . 2ϕn−2

2 (a)2b2)2x2(ϕ2(a)2 . . . 2ϕn−2
2 (a)2b2))−1.

The proof of 1◦ :

a) m = 1 :

ϕ2(a1)
(1)
=ϕ2(a)

(11)
= A(e(

n−2
a ), a,

n−2
a )

= A(e(
n−2
a ),

n−2
a , a)

1.3III
== a

(1)
=a1.

b) m = k ≥ 2 :

ϕ2(ak)
(11)
= A(e(

n−2
a ), ak,

n−2
a )

(1)(2)
== A(e(

n−2
a ),

k−1

A (
(k−1)(n−1)+1

a ),
n−2
a )

6.3V I
== A(e(

n−2
a ),

n−2
a ,

k−1

A (
(k−1)(n−1)+1

a ))
1.3III
==

k−1

A (
(k−1)(n−1)+1

a )
(1)(2)
== ak.

c) m = 0 :

ϕ2(a◦)
(3)
=ϕ2(e(

n−2
a ))

(11)
= A(e(

n−2
a ), e(

n−2
a ),

n−2
a )

1.1IV
== e(

n−2
a )

(3)
= a◦.

d) m = −k, k ≥ 1 :
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ϕ2(a−k)
(4)
==A(e(

n−2
a ), (

n−2
a , ak)−1,

n−2
a )

1.3III
== A(A((

n−2
a , ak)−1,

n−2
a , ak), (

n−2
a , ak)−1,

n−2
a )

1.1I
==A((

n−2
a , ak)−1, A(

n−2
a , ak, (

n−2
a , ak)−1),

n−2
a )

(1)(2)
== A((

n−2
a , ak)−1, A(

n−2
a ,

k−1

A , (
(k−1)(n−1)+1

a ), (
n−2
a , ak)−1),

n−2
a )

6.3V I
== A((

n−2
a , ak)−1, A(

k−1

A (
(k−1)(n−1)+1

a ),
n−2
a , (

n−2
a , ak)−1),

n−2
a )

(1)(2)
== A((

n−2
a , ak)−1, A(ak,

n−2
a , (

n−2
a , ak)−1),

n−2
a )

1.3III
== A((

n−2
a , ak)−1, e(

n−2
a ),

n−2
a )

1.1IV
== (

n−2
a , ak)−1(4)

=a−k.

The proof of 2◦ :

a2a
(5)
==A(a,

n−2
a , a)

1)
==a2ϕ2(a)2 . . . 2ϕn−1

2 (a)2b2

(1)
==a2ϕ2(a1)2 . . . 2ϕn−1

2 (a1)2b2

1◦
==a2a2 . . .2a2b2,

whence, by Th.1.3, we conclude that

b2 = a−(n−2).

The proof of 3◦ :

A((
n−2
a , x)−1,

n−2
a , x) = e(

n−2
a )

2.3IV
=⇒

(
n−2
a , x)−12ϕ2(a)2 . . . 2ϕn−2

2 (a)2b22x = e(
n−2
a )

4.2IV
=⇒

(
n−2
a , x)−12ϕ2(a)2 . . . 2ϕn−2

2 (a)b2x = (ϕ2(a)2 . . . 2ϕn−2
2 (a)2b2)−1,

whence, we conclude that the statement 3◦ holds.

3) Finally, by 1◦ − 3◦, and by Th. 1.3, we conclude that for every

α, α1, . . . , αn ∈ Z the following equalities hold
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A(aα1 , . . . , aαn) = aα12 . . . 2aαn2a−(n−2)

= a

n∑
i=1

αi+2−n

,

(aα1 , . . . , aαn−2 , aα)−1 3◦
=(aα12 . . . 2aαn−22a−(n−2)2aα2aα12 . . . 2aαn−22

a−(n−2))−1 = a
−α−2·(

n−2∑
i=1

αi−(n−2))

, and

e(aα1 , . . . , aαn−2)
4.2IV
= (aα12 . . . 2aαn−22a−(n−2))−1

= a
−

n−2∑
i=1

αi+n−2

. 2

1.5. Remark: For n = 2, the equality (8) reduces to the well-known equality

A(aα1 , aα2) = aα1+α2 .

Moreover, for n = 2, by convection
0∑

i=1
αi

def
= 0, the equalities (9) and (10)

reduce to the well-known equalities

(aα)−1 = a−α and e(∅) = a◦,

where e(∅) is a neutral element of the group (Q,A) and α ∈ Z.

1.6. Remarks: a) Definition of the s−th n−adic power [Post 1940]1: Let

n ≥ 3 and let (Q, A) be an n−group. Let, also, Z be the set of all integers.

Then we say that a<s> (s ∈ Z) is the s−th n−adic power of the element a

in (Q,A) iff

(a) a<s>def
= a, s = 0;

(b) a<s>def
=

s

A(
s(n−1)+1

a ), s > 0; and

(c) a<s>def
= x, s < 0, where

−s

A(x,
−s(n−1)

a ) = a.

b) [Ušan 1999/2]: a<s> = as+1 for all s ∈ Z. c) [Post 1940]: A(a<s1>, . . . , a<sn>) =

a<s1+...+sn+1> for all sn
1 ∈ Z.

The proof of b) :

1 a<0> (a)
= a

(1)
= a1.

2 s > 0 : a<s> (b)
=

s

A(
s(n−1)+1

a )
(1)(2)
= as+1.

3 s = −1 : A(a<−1>,
n−1
a )

(c)
= a ⇔ A(a<−1>,

n−2
a , a) = a,

where, by Th. 1.3 from Chapter III and by Def. 1.1 from I, we conclude that

1See, also [Rusakov 1992].
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a<−1> = e(
n−2
a ). Hence, by (3) we have a<−1> = a◦.

4 s = −k, k > 2 :
k

A(a<−k>,
k(n−1)

a ) = a ⇐⇒
k

A(a<−k>,
n−2
a ,

(k−2)(n−1)+1
a ,

n−2
a , a) = a

6V I
=⇒

2

A(a<−k>,
n−2
a ,

k−2

A (
(k−2)(n−1)+1

a ),
n−2
a , a) = a

(1)(2)
=⇒

2

A(a<−k>,
n−2
a , ak−1,

n−2
a , a) = a,

where, by Th. 1.3 from Chapter III and by Def. 1.1 from I, we conclude that

the following equality holds

(
n−2
a , ak−1)−1 = a<−k>.

Hence, by (4), we have a<−k> = a−k+1.

The proof of c) : By Th. 1.4 and by b).

2 Three more propositions on n−groups for

n ≥ 3

2.1. Theorem [Ušan, Žǐzović 2002/1]: Let n ≥ 3 and let (Q,A) be an

n−groupoid. Then: (Q,A) is an n−group iff there are mappings α and β,

respectively, of the sets Qn−2 and Q into the set Q such that the laws

(1) A(A(xn
1 ), x2n−1

n+1 ) = A(x1, A(xn+1
2 ), x2n−1

n+2 ),

(2) A(x, an−2
1 ,α(an−2

1 )) = A(bn−2
1 ,α(bn−2

1 ), x),

(3) βA(x, cn−2
1 ,α(cn−2

1 )) = x and

(4) βA(xn
1 ) = A(xn−1

1 , β(xn)) = A(xn−2
1 , β(xn−1), xn)

hold in the algebra (Q, {A,α, β}).
Proof. a) ⇒: Let (Q,A) be an n−group and let e be its {1, n}−neutral

operation (n ≥ 3). Whence, by Prop. 1.1 from Chapter IV, we conclude that

there is (n − 2)−ary operation α[= e] and unary operation β[= {(x, x)|x ∈
Q}] such that the laws (1)-(4) hold in the algebra (Q, {A,α, β}).

b) ⇐: Let (Q, {A,α, β}) be an algebra of the type < n, n − 2, 1 > in

which the laws (1)− (4) hold. By the assumption that in (Q, {A,α, β}) the
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laws (2) - (4) hold, we conclude that in (Q, {A,α, β}) also the following laws

hold

(5) A(x, an−2
1 , βα(an−2

1 )) = x and

(6) A(bn−2
1 , βα(bn−2

1 ), x) = x.

Since the laws (1), (5) and (6) hold in (Q, {A,α, β}), by Prop. 1.1 from

Chapter XII, we conclude that (Q, A) is an n−group. 2

Cf. Chapter X.

Similarly, it is possible to prove that the following proposition holds:

2.2. Theorem [Ušan, Žǐzović 2002/1]: Let n ≥ 3 and let (Q,A) be an

n−groupoid. Then: (Q,A) is an n−group iff there are mappings α and β,

respectively, of the sets Qn−2 and Q into the set Q such that the laws

(1) A(xn−2
1 , A(x2n−2

n−1 ), x2n−1) = A(xn−1
1 , A(x2n−1

n )),

(2) A(α(an−2
1 ), an−2

1 , x) = A(x, α(bn−2
1 ), bn−2

1 ),

(3) βA(α(cn−2
1 ), cn−2

1 , x) = x and

(4) βA(xn
1 ) = A(β(x1), x

n
2 ) = A(x1, β(x2), x

n
3 )

hold in the algebra (Q, {A,α, β}).
2.3. Theorem [Ušan, Žǐzović 2002/1]: Let n ≥ 3 and let (Q,A) be an

n−groupoid. Then: (Q,A) is an n−group iff there are mappings α and β,

respectively, of the sets Qn−2 and Q into the set Q such that the laws

(1̂) A(A(xn
1 ), x2n−1

n+1 ) = A(x1, A(xn+1
2 ), x2n−1

n+2 ) 2

(2̂) A(x, an−2
1 ,α(an−2

1 )) = A(α(bn−2
1 ), bn−2

1 , x),

(3̂) βA(x, cn−2
1 ,α(cn−2

1 )) = x and

(4̂) βA(xn
1 ) = A(xn−1

1 , β(xn)) = A(β(x1), x
n
2 )

hold in the algebra (Q, {A,α, β}).
Proof. â) ⇒: Let (Q,A) be an n−group and let e be its {1, n}−neutral

operation (n ≥ 3). Whence, we conclude that there is (n − 2)−ary opera-

tion α[= e] and unary operation β[= {(x, x)|x ∈ Q}] such that the algebra

(Q, {A, α, β}) the laws (1̂)− (4̂) hold.

2or: A(xn−2
1 , A(x2n−2

n−1 ), x2n−1) = A(xn−2
1 , A(x2n−1

n )).
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b̂) ⇐: Let (Q, {A,α, β}) be an algebra of the type < n, n − 2, 1 > in

which the laws (1̂)− (4̂) hold. By the assumption that in (Q, {A,α, β}) the

laws (2̂)− (4̂) hold, we conclude that in (Q, {A, α, β}) also the following laws

hold

(5̂) A(x, an−2
1 , βα(an−2

1 )) = x and

(6̂) A(βα(bn−2
1 ), bn−2

1 , x) = x.

Since in (Q, {A,α, β}) the laws (1̂), (5̂) and (6̂) hold, by Th. 2.2 from Chapter

IX, we conclude that (Q,A) is an n−group. 2

3 On congruence classes of finite n−groups

for n ≥ 3

3.1. Theorem [Ušan 2002/2]: Let (Q,A) be an n−group, |Q| ∈ N\{1}
and n ≥ 3. Further on, let θ be an arbitrary congruence of the n−group

(Q,A) and let Ct[t ∈ Ct] be an arbitrary class from the set Q/θ. Then there

is a k ∈ N such that the pair (Ct,
k

A) is a (k(n − 1) + 1)−subgroup of the

(k(n− 1) + 1)−group (Q,
k

A).3

Proof. The following statements hold:

◦1 If ({Q, {·, ϕ, b}) is an nHG−algebra associated to the n−group (Q,A),

then for every k ∈ N ({Q, {·, ϕ, bk}) is a (k(n−1)+1)HG−algebra associated

to the (k(n− 1) + 1)−group (Q,
k

A). [Cf. the proof of Th. 7.1 from Chapter

VI.]

◦2 Let (Q,A) be an n−group, e its {1, n}−neutral operation and let

n ≥ 3. Also, let θ be an arbitrary element of the set Con(Q,A). Then for

every Ct ∈ Q/θ there is a sequence cn−2
1 over Q such that

(o) e(cn−2
1 ) = t (∈ Ct).

[Cf. Prop. 1.4 from Chapter IV.]

3Cf. Remark 2.3 from Chapter XIV.
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◦3 Let the sequence cn−2
1 over Q satisfies (o) from ◦2. Then the algebra

({Q, {·, ϕ, b}) defined with

(1) x · ydef
= A(x, cn−2

1 , y),

(2) ϕ(x)
def
= A(e(cn−2

1 ), x, cn−2
1 ) and

(3) b
def
= A(

n
e(cn−2

1 ) |) [= A(
n
t)]

is an nHG−algebra associated to the n−group (Q,A). [Cf. Th. 3.1 from

Chapter IV.]

◦4 (Ct, ·) is a subgroup of the group (Q, ·). [Cf. the proof of Th. 5.5 from

Chapter VI.]

◦5 e(cn−2
1 ) is a neutral element of the group (Q, ·). [Cf. Th. 1.3 from

Chapter III and by (1).]

◦6 (∃k ∈ N)bk = e(cn−2
1 ). [By (o), (1), 5◦ and by |Q| ∈ N.]

Finally, by ◦1−◦ 6 and by Th. 5.5 [−(iii)] from Chapter VI, we conclude

that Th. 3.1 holds. 2

4 The n−ary case of a Bruck-Hughes Theo-

rem

4.1. Theorem [Bruck 1946, Hughes 1957]4 : Let (Q, ·) be a groupoid with

a neutral element e, and let (Q, ◦) be a semigroup. Let also α, β, γ be the

permutations of the set Q such that

(o) x ◦ y = γ(α(x) · β(y)) for all x, y ∈ Q.

Then (Q, ◦) is a semigroup with a neutral element5.

Proof.6 Since (Q, ◦) is a semigroup, by (o), we have

4[Kurosh 1962].
5Precisely: Then (Q, ◦) is isomorphic to (Q, ·), whence (Q, ◦) and (Q, ·) are semigroup

with neutral elements.
6[Hughes 1957].
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γ(α(γ(αa · βb)) · βc) = γ(αa · β(γ(αb · βc))),

whence, since γ is a permutation in the set Q, we obtain

(1) α(γ(αa · βb)) · βc) = αa · β(γ(αb · βc)).

Putting αa = βc = e in (1), we obtain

(2) α(γ(βb)) = β(γ(αb)) for all b ∈ Q.

In addition, putting αa = e in (1) and using (2), we have

β(γ(αb)) · βc = β(γ(αb · βc)),

whence, putting αb = a and βc = b, we obtain

(3) β(γa) · b = β(γ(a · b)) for all a, b ∈ Q.

Similarly, putting βc = e in (1) and using (2), we have

α(γ(αa · βb)) = αa · α(γ(βb)),

whence, letting a instead αa and b instead βb, we obtain

(4) α(γ(a · b)) = a · α(γb) for all a, b ∈ Q.

Finally, by (o), (2), (3) and (4), we have

α(γ(β(a ◦ b)))
(0)
=α(γ(β(γ(αa · βb))))
(3)
=α(γ(β(γ(αa)) · βb))
(4)
=β(γ(αa)) · α(γ(βb))
(2)
=α(γ(βa)) · α(γ(βb))

for all a, b ∈ Q. 2

4.2. Theorem [Ušan 1999/5]: Let (Q,A) be an n−groupoid, let (Q, B) be

an n−groupoid, let α, β, γ be the (n − 1)−ary operations in the set Q, and

let n ≥ 3. Moreover, let the following statements hold:

(11) (Q,A) is an < 1, n > −associative n−groupoid;

(12) (Q,A) is an < 1, 2 > −associative [or < n − 1, n > −associative]

n−groupoid;

(2) (Q, B) has a {1, n}−neutral operation e;

(3) For every sequence an−1
1 over Q there are exactly one x, exactly one

y and exactly one z such that

α(an−2
1 , x) = an−1, β(an−2

1 , y) = an−1 and γ(an−2
1 , z) = an−1; and
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(4) For all x, y ∈ Q and for every sequence an−2
1 over Q the following

equality holds

A(x, an−2
1 , y) = γ(an−2

1 , B(α(an−2
1 , x), an−2

1 , β(an−2
1 , y))).

Then (Q,A) is an n−group7

Proof. We prove that the following five assertions hold:

1◦ Let an−2
1 be an arbitrary sequence over Q and let for all x, y ∈ Q

(a) x · y = B(x, an−2
1 , y) and

(b) x ◦ y = A(x, an−2
1 , y).

Then (Q, ·) is a groupoid with the neutral element e = e(an−2
1 ), and (Q, ◦) is

a semigroup.

2◦ Let an−2
1 be a sequence over Q from 1◦. Also let for all z ∈ Q

(c) α̂(z)
def
= α(an−2

1 , z), β̂(z)
def
= β(an−2

1 , z) and γ̂(z)
def
= γ(an−2

1 , z).

Then: a) for every x, y ∈ Q the following equality holds

(d) x ◦ y = γ̂(α̂(x) · β̂(y)), and

b) α̂, β̂, γ̂ are permutations in the set Q.

3◦ Let an−2
1 sequence over Q from 1◦(2◦). Also let for all x ∈ Q

(e) F (an−2
1 , x)

def
= α(an−2

1 , γ(an−2
1 , β(an−2

1 , x))).

Then for all x, y ∈ Q the following equality holds

(f) F (an−2
1 , A(x, an−2

1 , y)) = B(F (an−2
1 , x), an−2

1 , F (an−2
1 , y)).

4◦ Let an−2
1 be an arbitrary sequence over Q, let e be an {1, n}−neutral

operation in the n−groupoid (Q,B) [:(2)], and let F be from 3◦ [:(e)]. Then,

the equation

(g) F (an−2
1 , z) = b

with the unknown z has exactly one solution in Q.

5◦ Let E be a mapping of the set Qn−2 into the set Q such that for every

sequence an−2
1 over Q the following equality holds

(h) F (an−2
1 , E(an−2

1 )) = e(an−2
1 ).

7i.e., (Q, A) is an n−semigroup with an {1, n}−neutral operation (:Th. 2.1 from Chap-
ter IX.). Cf. Th. 4.1.
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Then E is an {1, n}−neutral operation of the n−groupoid (Q,A).

Sketch of the proof of 1◦ :

1) x · e(an−2
1 )

(a)
=B(x, an−2

1 , e(an−2
1 ))

(2)
= x,

e(an−2
1 ) · x (a)

=B(e(an−2
1 ), an−2

1 , x)
(2)
= x.

2) (x ◦ y) ◦ z
(b)
=A(A(x, an−2

1 , y), an−2
1 , z)

(11)
= A(x, an−2

1 , A(y, an−2
1 , z))

(b)
=x ◦ (y ◦ z)

Sketch of the proof of 2◦ :

a) (x ◦ y)
(b)
=A(x, an−2

1 , y)
(4)
=γ(an−2

1 , B(α(an−2
1 , x), an−2

1 , β(an−2
1 , y)))

(a)(c)
= γ̂(α̂(x) · β̂(y)).

b) By (3) and by (c).

Sketch of the proof of 3◦ :

By 1◦, 2◦ and by the proof of Theorem 4.1.

Sketch of the proof of 4◦ :

By (2), by 3◦-(e) and by (3).

Sketch of the proof of 5◦ :

F (an−2
1 , A(x, an−2

1 , E(an−2
1 )))

3◦(f)
=

B(F (an−2
1 , x), an−2

1 , F (an−2
1 , E(an−2

1 )))
(h)
=

B(F (an−2
1 , x), an−2

1 , e(an−2
1 ))

(2)
=F (an−2

1 , x),

where, by 4◦, we have

A(x, an−2
1 , E(an−2

1 )) = x.

Similarly, we have

A(E(an−2
1 ), an−2

1 , x) = x.

Finally, by (12), by 5◦ and by Th. 2.2 from Chapter IX, we conclude that

(Q,A) is an n−group. 2
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4.3. Reamark: Belousov V. D. and Sandik M. D. have proved the following

assertion [Belousov, Sandik 1966]: Let (Q,B) be an n−loop, n ≥ 3 and let

(Q, A) be an n−group with (at least one) neutral element [cf. Chapter II-1].

Also let α1, . . . , αn+1 be the permutations in the set Q such that for every

xn
1 ∈ Q the following equality holds

A(xn
1 ) = αn+1B(α1(x1), . . . , αn(xn)).

Then (Q,A) is isomorphic to (Q,B).

5 On (m,n)−rings

5.1. Definition [Boccioni 1965, Čupona 1965, Crombez 1972/1]: Let (Q,A)

be a commutative m−group and m ≥ 2. Let also (Q,M) be an n−groupoid

and n ≥ 2. We say that (Q,A, M) is an (m,n)−ring iff for all i ∈ {1, . . . , n}
and for every an−1

1 , bm
1 ∈ Q the following equality holds

(0) M(ai−1
1 , A(bm

1 ), an−1
i ) = A( M(ai−1

1 , bj, a
n−1
i ) m

j=1)
8.

5.2. Theorem [Ušan, Žǐzović 1999/2]: Let (Q,A, M) be an (m,n)−ring

and let O the {1,m}−neutral operation of the m−group (Q,A). Then for all

i ∈ {1, . . . , n}, for every an−1
1 ∈ Q and for every sequence cm−2

1 over Q the

following equality holds

(1) M(ai−1
1 ,O(cm−2

1 ), an−1
i ) = O( M(ai−1

1 , cj, a
n−1
i ) m−2

j=1 )9

Proof. Let

(2) A−1(x, cm−2
1 , y) = z

def⇐⇒A(x, cm−2
1 , z) = y

for all x, y, z ∈ Q and for every sequence cm−2
1 over Q. Then the following

statements hold:

1◦ For all i ∈ {1, . . . , n}, for every an−1
1 , x, y ∈ Q and for every sequence

cm−2
1 over Q the following equality holds

8Cf. Appendix I-2.
9 M(ai−1

1 , cj , a
n−1
i ) 0

j=1
def
= ∅.
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M(ai−1
1 , A−1(x, cm−2

1 , y), an−1
i )

= A−1(M(ai−1
1 , x, an−1

i ), M(ai−1
1 , cj, a

n−1
i ) m−2

j=1 ,M(ai−1
1 , y, an−1

i ))

2◦ For all x ∈ Q and for every sequence cm−2
1 over Q the following equality

holds

A−1(x, cm−2
1 , x) = O(cm−2

1 ).

Sketch of the proof of 1◦ :

A(x, cm−2
1 , z) = y ⇒

M(ai−1
1 , A(x, cm−2

1 , z), an−1
i ) = M(ai−1

1 , y, an−1
i )

(0)⇐⇒
A(M(ai−1

1 , x, an−1
i ), M(ai−1

1 , cj, a
n−1
i ) m−2

j=1 ,M(ai−1
1 , z, an−1

i ))

= M(ai−1
1 , y, an−1

i )
(2)⇐⇒

A−1(M(ai−1
1 , x, an−1

i ), (M(ai−1
1 , cj, a

n−1
i ) m−2

j=1 ,M(ai−1
1 , y, an−1

i ))

= M(ai−1
1 , z, an−1

i ))
(2)⇐⇒

A−1(M(ai−1
1 , x, an−1

i ), (M(ai−1
1 , cj, a

n−1
i ) m−2

j=1 ,M(ai−1
1 , y, an−1

i ))

= M(ai−1
1 , A−1(x, cm−2

1 , y), an−1
i ).

Sketch of the proof of 2◦ :

A(x, cm−2
1 ,O(cm−2

1 ))
1.3III
== x

(2)⇐⇒
A−1(x, cm−2

1 , x) = O(cm−2
1 ).

Finally, by 1◦ and by 2◦, we conclude that for all i ∈ {1, . . . , n}, for

every an−1
1 , x ∈ Q and for every sequence cm−2

1 over Q the following series of

equalities holds:

M(ai−1
1 ,O(cm−2

1 ), an−1
i )

2◦
=M(ai−1

1 , A−1(x, cm−2
1 , x), an−1

i )

1◦
=A−1(M(ai−1

1 , x, an−1
i ), M(ai−1

1 , cj, a
n−1
i ) m−2

j=1 ,M(ai−1
1 , x, an−1

i ))

2◦
=O( M(ai−1

1 , cj, a
n−1
i ) m−2

j=1 ).

Remark: For m = n = 2 : a ·O(∅) = O(∅) · a = O(∅). 2
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5.3. Remark: O is an {i, j}−neutral operation of the m−group (Q,A) for

every {i, j} ⊆ {1, . . . , m}, i < j. Cf. Def. 5.1 and Chapter V.

5.4. Theorem [Ušan, Žǐzović 1999/2]: Let (Q,A, M) be an (m,n)−ring

and let − be the inverse operation in the m−group (Q,A). Then for all i ∈
{1, . . . , n}, for every an−1

1 , b ∈ Q and for every sequence cm−2
1 over Q the

following equality holds

M(ai−1
1 ,−(cm−2

1 , b), an−1
i ) = −( M(ai−1

1 , cj, a
n−1
i ) m−2

j=1 ,M(ai−1
1 , b, an−1

i )).

Proof. Firstly we prove that under the assumption the following statements

hold:

◦1 For all i ∈ {1, . . . , n}, for every an−1
1 , b ∈ Q and for every sequence

cm−2
1 over Q we have

O( M(ai−1
1 , cj, a

n−1
i ) m−2

j=1 ) =

A(M(ai−1
1 , b, an−1

i ), M(ai−1
1 , cj, a

n−1
i ) m−2

j=1 ,M(ai−1
1 ,−(cm−2

1 , b), an−1
i )).

◦2 For all i ∈ {1, . . . , n}, for every an−1
1 , b ∈ Q and for every sequence

cm−2
1 over Q the following equality holds

O( M(ai−1
1 , cj, a

n−1
i ) m−2

j=1 ) =

A(M(ai−1
1 , b, an−1

i ), M(ai−1
1 , cj, a

n−1
i ) m−2

j=1 ,−( M(ai−1
1 , cj, a

n−1
i ) m−2

j=1 ,

M(ai−1
1 , b, an−1

i ))).

Sketch of the proof of ◦1 :

O( M(ai−1
1 , cj, a

n−1
i ) m−2

j=1 )
5.2
==M(ai−1

1 ,O(cm−2
1 ), an−1

i )
1.3III
=

M(ai−1
1 , A(b, cm−2

1 ,−(cm−2
1 , b)), an−1

i )
5.1
=

A(M(ai−1
1 , b, an−1

i ), M(ai−1
1 , cj, a

n−1
i ) m−2

j=1 ,M(ai−1
1 ,−(cm−2

1 , b), an−1
i )).

Sketch of the proof of ◦2 :

O( M(ai−1
1 , cj, a

n−1
i ) m−2

j=1 )
1.3III
==

A(M(ai−1
1 , b, an−1

i ), M(ai−1
1 , cj, a

n−1
i ) m−2

j=1 ,−( M(ai−1
1 , cj, a

n−1
i ) m−2

j=1 ,

M(ai−1
1 , b, an−1

i ))).
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Finally, by ◦1 and by ◦2, we conclude that for all i ∈ {1, . . . , n}, for every

an−1
1 , b ∈ Q and for every sequence cm−2

1 over Q the following equality holds

A(M(ai−1
1 , b, an−1

i ), M(ai−1
1 , cj, a

n−1
i ) m−2

j=1 ,M(ai−1
1 ,−(cm−2

1 , b), an−1
i )) =

A(M(ai−1
1 , b, an−1

i ), M(ai−1
1 , cj, a

n−1
i ) m−2

j=1 ,−( M(ai−1
1 , cj, a

n−1
i ) m−2

j=1 ,

M(ai−1
1 , b, an−1

i ))),

whence, by Def. 1.1 from Chapter I, we conclude that for all i ∈ {1, . . . , n},
for every an−1

1 , b ∈ Q and for every sequence cm−2
1 over Q the following

equality holds

M(ai−1
1 ,−(cm−2

1 , b), an−1
i ) = −( M(ai−1

1 , cj, a
n−1
i ) m−2

j=1 , M(ai−1
1 , b, an−1

i )).

This completes the proof.

Remark: For m = n = 2 : a · (−b) = −(a · b). 2

5.5. Remark: About the (m,n)−rings see also, for example, in: [Iancu

1999] and [Paunic 1985].
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Chapter XVI

ON (n,m)−GROUPS, NP -POLYAGROUPS AND

POLYAGROUPS

1 On (n,m)−groups

1.1. Definition [Čupona 1983]: Let (Q,A) be an (n,m)−groupoid (A :

Qn −→ Qm) and let n ≥ m + 1 (n,m ∈ N). Then: (a) we say that (Q,A)

is an (n,m)−semigroup iff for every i, j ∈ {1, . . . , n −m + 1}, i < j, the

following law holds

A(xi−1
1 , A(xi+n−1

i ), x2n−m
i+n ) = A(xj−1

1 , A(xj+n−1
j ), x2n−m

j+n )

[:< i, j > −associative law]; and (b) we say that (Q,A) is an (n,m)−group

iff (Q,A) is an (n,m)−semigroup and for every an
1 ∈ Q there is exactly

one sequence xm
1 over Q and exactly one sequence ym

1 over Q such that the

following equalities hold

A(an−m
1 , xm

1 ) = an
n−m+1 and A(ym

1 , an−m
1 ) = an

n−m+1.

1.2. Remark: A notion of an (n,m)−group was introduced by Ǵ. Čupona in

[Čupona 1983] as a generalization of the notion of a group (n−group). The

paper [Čupona, Celakoski, Markovski, Dimovski 1988] is mainly a survey on

the known results for vector valued groupoids, semigroups and groups (up to

1988).

1.3. Definition [Ušan 1989]: Let (Q,A) be an (n,m)−groupoid and n ≥
2m. Let also e be a mapping of the set Qn−2m into the set Qm. Then, we

say that e is an {1, n−m + 1}−neutral operation of the (n,m)−groupoid

(Q, A) iff for all xm
1 ∈ Qm and for every sequence an−2m

1 over Q the following

equalities hold
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A(xm
1 , an−2m

1 , e(an−2m
1 )) = xm

1 and A(e(an−2m
1 ), an−2m

1 , xm
1 ) = xm

1 .

Remark: For m = 1, e is an {1, n}−neutral operation of the n−groupoid

(Q,A). Cf. Chapter II-2.

1.4. Proposition [Ušan 1989]: Every (n,m)−groupoid (n ≥ 2m) has at

most one {1, n−m + 1}−neutral operation ({i, j}−neutral operation).

Cf. the proof of Prop. 2.3 from Chapter II.

1.5. Theorem [Ušan 1999/3]: Let n ≥ 2m, m ≥ 2 and let (Q,A) be an

(n,m)−groupoid. Then, (Q,A) is an (n,m)−group iff there are mappings −1

and e, respectively, of the sets Qn−m and Qn−2m into the set Qm such that

the laws

A(A(xn
1 ), x2n−m

n+1 ) = A(x1, A(xn+1
2 ), x2n−m

n+2 ),

A(A(xn
1 ), x2n−m

n+1 ) = A(xn−m
1 , A(x2n−m

n−m+1)),

A(xm
1 , an−2m

1 , e(an−2m
1 )) = xm

1 and

A(xm
1 , an−2m

1 , (an−2m
1 , xm

1 )−1) = e(an−2m
1 )

hold in the algebra Q, {A,−1 , e}).
See the proof in [Ušan 2005/1].

1.6. Theorem [Ušan 1999/3]: Let n ≥ 3m and let (Q,A) be an (n,m)−groupoid.

Then, (Q,A) is an (n,m)−group iff there are mappings −1 and e, respectively,

of the sets Qn−m and Qn−2m into the set Qm such that the laws

(a) A(A(xn
1 ), x2n−m

n+1 ) = A(x1, A(xn+1
2 ), x2n−m

n+2 ),

(b) A(A(am
1 , bn−m

1 ), cm
1 , dn−2m

1 ) = A(am
1 , A(bn−m

1 , cm
1 ), dn−2m

1 ),

(c) A(xm
1 , an−2m

1 , e(an−2m
1 )) = xm

1 and

(d) A(xm
1 , an−2m

1 , (an−2m
1 , xm

1 )−1) = e(an−2m
1 )

hold in the algebra (Q, {A,−1 , e}).
See the proof in [Ušan 2005/1].

Remark: For m = 1 : (a) = (b).
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1.7. Theorem [Ušan 1999/3]: Let n ≥ 2m and let (Q,A) be an (n,m)−groupoid.

Then, (Q,A) is an (n,m)−group iff there are mappings −1 and e, respectively,

of the sets Qn−m and Qn−2m into the set Qm such that the laws

A(A(xn
1 ), x2n−m

n+1 ) = A(x1, A(xn+1
2 ), x2n−m

n+2 ),

A(e(an−2m
1 ), an−2m

1 , xm
1 ) = xm

1 and

A(A(xm
1 , an−2m

1 , bm
1 ), an−2m

1 , (an−2m
1 , bm

1 )−1) = xm
1

hold in the algebra Q, {A,−1 , e}).
See the proof in [Ušan 2005/1].

1.8. Theorem [Ušan 1999/3]: Let n ≥ 2m and let (Q,A) be an (n,m)−groupoid.

Then, (Q,A) is an (n,m)−group iff there is a mapping −1 of the set Qn−m

into the set Qm such that the laws

A(A(xn
1 ), x2n−m

n+1 ) = A(x1, A(xn+1
2 ), x2n−m

n+2 ) 1,

A((an−2m
1 , bm

1 )−1, an−2m
1 , A(bm

1 , an−2m
1 , xm

1 )) = xm
1 and

A(A(xm
1 , an−2m

1 , bm
1 ), an−2m

1 , (an−2m
1 , bm

1 )−1) = xm
1

hold in the algebra Q, {A,−1 }).
See the proof in [Ušan 2005/1].

The following two propositions also hold.

1.9. Theorem [Ušan 2000]: Let n ≥ 2m and let (Q,A) be an (n,m)−groupoid.

Then, (Q,A) is an (n,m)−group iff the following statements hold:

(i) (Q,A) is an < 1, n−m + 1 > −associative (n,m)−groupoid,

(ii) (Q,A) is an < 1, 2 > −associative (n,m)−groupoid 2,

(iii) For every an
1 ∈ Q there is at least one xm

1 ∈ Qm and at least one

ym
1 ∈ Qm such that the following equalities hold

1or: A(xn−m−1
1 , A(x2n−m+1

n−m ), x2n−m) = A(xn−m
1 , A(x2n−m

n−m+1)).
2or: < n−m,n−m + 1 > −associative (n, m)−groupoid.
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A(an−m
1 , xm

1 ) = an
n−m+1 and A(ym

1 , an−m
1 ) = an

n−m+1.

See the proof in [Ušan 2005/1].

1.10. Theorem [Ušan 2001/2]: Let n ≥ 3m and let (Q,A) be an (n, m)−groupoid.

Then, (Q, A) is an (n,m)−group iff there is i ∈ {m + 1, . . . , n − 2m + 1}
such that the following statements hold

(a) The < i− 1, i > −associative law holds in (Q,A),

(b) The < i, i + 1 > −associative law holds in (Q,A) and

(c) For every an
1 ∈ Q there is exactly one xm

1 ∈ Qm such that

A(ai−1
1 , xm

1 , an−m
i ) = an

n−m+1.

See the proof in [Ušan 2005/1].

2 On NP -polyagroups and polyagroups

2.1. Definition [Ušan, Galić 2001]: Let k > 1, s ≥ 1, n = k · s + 1 and let

(Q,A) be an n−groupoid. Then: we say that (Q,A) is an NP−polyagroup

of the type (s, n− 1) iff the following statements hold:

1◦ For all i, j ∈ {1, . . . , n} (i < j) if i, j ∈ {t · s + 1|t ∈ {0, 1, . . . , k}},
then the < i, j > −associative law holds in (Q,A); and

2◦ For all i ∈ {t · s + 1|t ∈ {0, 1, . . . , k}} and for every an
1 ∈ Q there is

exactly one xi ∈ Q such that the equality

A(ai−1
1 , xi, a

n−1
i ) = an

holds.3

2.2. Theorem [Ušan, Galić 2001]: Let k > 1, s ≥ 1, n = k · s + 1 and

let (Q,A) be an n−groupoid. Then: (Q,A) is an NP−polyagroup of the

type (s, n−1) iff there are mappings −1 and e, respectively, of the sets Qn−1

and Qn−2 into the set Q such that the following laws hold in the algebra

3For s = 1 (Q, A) is a (k + 1)−group, where k + 1 ≥ 3; k > 1.
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(Q, {A,−1 , e}) [of the type < n, n− 1, n− 2 >]:

A(A(xn
1 ), x2n−1

n+1 ) = A(xs
1, A(xs+n

s+1 ), x2n−1
s+n+1),

A(x, an−2
1 , e(an−2

1 )) = x and

A(a, an−2
1 , (an−2

1 , a)−1) = e(an−2
1 ).

See the proof in [Ušan 2005/2].

Cf. Th. 3.4(-Tabl. 2) from Chapter III.

2.3. Theorem [Ušan, Galić 2001]: Let k > 1, s ≥ 1, n = k · s + 1 and

let (Q,A) be an n−groupoid. Then, (Q,A) is an NP−polyagroup of the

type (s, n−1) iff there are mappings −1 and e, respectively, of the sets Qn−1

and Qn−2 into the set Q such that the following laws hold in the algebra

Q, {A,−1 , e}) [of the type < n, n− 1, n− 2 >]:

A(x
(k−1)·s
1 , A(x

(k−1)·s+n
(k−1)·s+1 ), x2n−1

(k−1)·s+n+1) = A(xk·s
1 , A(x2n−1

k·s+1)),

A(e(an−2
1 ), an−2

1 , x) = x and

A((an−2
1 , a)−1, an−2

1 , a) = e(an−2
1 ).

Cf. Th. 3.1 from Chapter III.

2.4. Theorem [Ušan, Galić 2001]: Let k > 1, s ≥ 1, n = k · s + 1 and

let (Q,A) be an n−groupoid. Then, (Q,A) is an NP−polyagroup of the

type (s, n−1) iff there are mappings −1 and e, respectively, of the sets Qn−1

and Qn−2 into the set Q such that the following laws hold in the algebra

Q, {A,−1 , e}) [of the type < n, n− 1, n− 2 >]:

A(A(xn
1 ), x2n−1

n+1 ) = A(xs
1, A(xs+n

s+1 ), x2n−1
s+n+1)

4,

A(x, an−2
1 , e(an−2

1 )) = x and

A((an−2
1 , a)−1, an−2

1 , A(a, an−2
1 , x)) = x.

See the proof in [Ušan 2005/2].

Cf. Th. 3.4(-Tabl. 6) from Chapter III.

The following two operations also hold.

4or: A(x(k−1)·s
1 , A(x(k−1)·s+n

(k−1)·s+1 ), x2n−1
(k−1)·s+n+1) = A(xk·s

1 , A(x2n−1
k·s+1)).
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2.5. Theorem [Ušan, Žǐzović 2001]: Let k > 1, s ≥ 1, n = k · s + 1 and

let (Q,A) be an n−groupoid. Then, (Q,A) is an NP−polyagroup of the

type (s, n− 1) iff the following statements hold:

(i) (Q,A) is an < 1, n > −associative n−groupoid,

(ii) (Q,A) is an < 1, s + 1 > −associative n−groupoid or

(Q,A) is a < (k − 1) · s + 1, k · s + 1 > −associative n−groupoid, and

(iii) For every an
1 ∈ Q there are at least one x ∈ Q and at least one

y ∈ Q such that the following equalities hold

A(an−1
1 , x) = an and A(y, an−1

1 ) = an.

See the proof in [Ušan 2005/2].

Cf. Chapter IX-3.

2.6. Theorem [Ušan 2002/1]: Let k > 1, s ≥ 1, n = k · s + 1 and let

(Q,A) be an n−groupoid. Then, (Q,A) is an NP−polyagroup of the

type (s, n− 1) iff there is i ∈ {t · s + 1|t ∈ {1, . . . , k − 1} such the following

statements hold:

(a) The < i− s, i > −associative law holds in (Q,A),

(b) The < i, i + s > −associative law holds in (Q,A) and

(c) For every an
1 ∈ Q there is exactly one x ∈ Q such that

A(ai−1
1 , x, an−1

i ) = an.

See the proof in [Ušan 2005/2].

Cf. Chapter IX-3.

2.7. Definition [Sokhatski 1998; Sokhatsky, Yurevich 1999]: Let k > 1, s ≥
1, n = k · s + 1 and let (Q,A) be an n−groupoid. Then, we say that (Q,A)

is a polyagroup of the type (s, n− 1) iff the following statements hold:

◦1 For all i, j ∈ {1, . . . , n}(i < j) if i ≡ j(mod s), then the < i, j >

−associative law holds in (Q,A); and

◦2 (Q,A) is an n−quasigroup.

2.8. Proposition: Every polyagroup of the type (s, n−1) is an NP−polyagroup
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of the type (s, n− 1). [By Def. 2.1 and by Def. 2.7.]

2.9. Theorem [Ušan, Žǐzović 2002/2]: Let k > 1, s ≥ 1, n = k · s + 1 and

let (Q,A) be an n−groupoid. Then, (Q,A) is a polyagroup of the type

(s, n− 1) iff the following statements hold:

(i) (Q,A) is an < i, s+i > −associative n−groupoid for all i ∈ {1, . . . , s};
(ii) (Q,A) is an < 1, n > −associative n−groupoid;

(iii) For every an
1 ∈ Q there are at least one x ∈ Q and at least one

y ∈ Q such that the following equalities hold

A(x, an−1
1 ) = an and A(an−1

1 , y) = an; and

(iv) For every an
1 ∈ Q and for all j ∈ {2, . . . , s}∪{(k−1) ·s+2, . . . , k ·s}

there is exactly one xj ∈ Q such that the following equality holds

A(aj−1
1 , xj, a

n−1
j ) = an.

See the proof in [Ušan 2005/2].

See, also Th. 3.2 –IX.
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Appendix 1

About the expression aq
p

Let p ∈ N, q ∈ N ∪ {0} and let a be a mapping of the set {i|i ∈ N, i ≥
p ∧ i ≤ q} into the set S; ∅ 6∈ S. Then:

aq
p stands for





ap, . . . , aq ; p < q
ap ; p = q
empty sequence(= ∅) ; p > q.

For example: X(aj−1
1 , Y (aj+n−1

j ), a2n−1
j+n ), j ∈ {1, . . . , n}, n ≥ 3, for j = n

stands for X(a1, . . . , an−1, Y (an, . . . , a2n−1)).

Besides, in some situations instead of aq
p we write (ai)

q
i=p [briefly: (ai)

q
p].

For example: (∀xi ∈ Q)q
1 for q > 1 stands for ∀x1 ∈ Q . . . ∀xq ∈ Q [usualy,

we write: (∀x1 ∈ Q) . . . (∀xq ∈ Q)], for q = 1 it stands for ∀x1 ∈ Q, and for

q = 0 it stands for an empty sequence (= ∅). If aq
p is a sequence over a set

S, p ≤ q and the equalities ap = . . . = aq = b (∈ S) are satisfied, then

aq
p is denoted by

q−p+1

b .

In connection with this, if q − p + 1 = r (when we assume that there would

be no missunderstanding),

instead of
q−p+1

b we write
r

b.

In addition, we denote the empty sequence over S with
◦
b, where b is an

arbitrary element from S.
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On skew operation of an n−group

1. Definition [Dörnte 1928]: Let (Q,A) be an n−group and n ≥ 3. Then:

we say that an 1-ary operation − is a skew operation of the n−group

(Q, A) iff for each a ∈ Q following equality holds

(o) A(
n−1
a , a) = a.1

2. Proposition [Dörnte 1928]: Let (Q,A) be an n−group and n ≥ 3. Then

for all i ∈ {1, . . . , n} and for every a ∈ Q the following equality holds

A(
i−1
a , a,

n−i
a ) = a.

Sketch of the proof.

A(
n−1
a , a)

(o)
= a ⇒

A(
i−1
a ,A(

n−1
a , a),

n−i
a ) = A(

n
a)

1.1I
=⇒

A(
i−1
a ,

n−i
a ,A(

i−1
a , a,

n−i
a )) = A(

n
a) =⇒

A(
n−1
a ,A(

i−1
a , a,

n−i
a )) = A(

n−1
a , a)

1.1I
=⇒

A(
i−1
a , a,

n−i
a ) = a. 2

3. Proposition [Dörnte 1928]: Let (Q,A) be an n−group and n ≥ 3. Then

for all a, x ∈ Q the equality

A(x,
n−2
a , a) = x

holds.

Sketch of the proof.

A(x,
n−2
a , a) = y ⇒

A(A(x,
n−2
a , a),

n−1
a ) = A(y,

n−1
a ) ⇒

A(x,
n−2
a , A(a,

n−1
a )) = A(y,

n−1
a )

2⇒
A(x,

n−2
a , a) = A(y,

n−1
a )

1.1I
=⇒x = y. 2

1or: a = A−1(
n
a), where A−1(xn−1

1 , y) = z
def⇐⇒A(xn−1

1 , z) = y.
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4. Proposition: Let n ≥ 3, (Q,A) be an n−group, e its {1, n}−neutral

operation, and − its skew operation. Then for all a ∈ Q the following equality

holds

a = e(
n−2
a ).

Sketch of the proof.

A(x,
n−2
a , a)

3.
= x and A(x,

n−2
a , e(

n−2
a ))

1.3III
== x ⇒

A(x,
n−2
a , a) = A(x,

n−2
a , e(

n−2
a ))

1.1I
=⇒ a = e(

n−2
a ). 2

The following proposition also holds.

5. Theorem [Žǐzović 1998]: Let n ≥ 3, let (Q,A) be an n−group, e its

{1, n}−neutral operation and − its skew operation. Then for every sequence

an−2
1 over Q the following equality holds

e(an−2
1 ) =

n−3

A (an−2,
n−3
a n−2, . . . , a1,

n−3
a 1).

[Cf. Th. 2.9 from Chapter VIII. For k = 0
k

A(x
k(n−1)+1
1 )

def
= x1.]

n−groups (n ≥ 3) as algebras of the type < n, 1 > with laws were de-

scribed in [Gleichgewicht, Glazek 1967]:

6. Theorem [Gleichgewicht, Glazek 1967]: For n ≥ 3 an n−semigroup

(Q,A) is an n−group iff there is a unary operation − in Q such that the

following laws are satisfied:

A(x,
n−2
a , a) = x, A(a,

n−2
a , x) = x,

A(x,
n−3
a , a, a) = x, A(a, a,

n−3
a , x) = x.

n−groups (n ≥ 3) as algebras of the type < n, 1 > with laws have been de-

scribed also, for example, in [Celakoski 1977], [Dudek, Glazek, Gleichgewicht

1977] and [Dudek 1995]. For example:

7. Theorem [Celakoski 1977]: For n ≥ 3 an n−semigroup (Q,A) is an

n−group iff for every a ∈ Q there is a unary operation − in Q such that

for some p : 0 ≤ p ≤ n − 2 and for some: s : 0 ≤ s ≤ n − 2 the following
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identities hold:

A(
p
a, a,

n−p−2
a , x) = x and A(x,

n−s−2
a , a,

s
a) = x.

[See, also [Čupona, Celakoski 1980].]

8. Theorem (Hosszú-Gluskin Theorem): Let n ≥ 3, (Q, A) be an n−group

and − its skew operation. Let also c be an arbitrary element from the set Q,

and let

x · ydef
= A(x,

n−2
c , y),

ϕ(x)
def
= A(c, x,

n−2
c ) and

b
def
= A(c, . . . , c)

for all x, y ∈ Q. Then, the following statements hold:

(i) (Q, {·, ϕ, b}) is an nHG−algebra, and

(ii) For every xn
1 ∈ Q the equality

A(xn
1 ) = x1 · ϕ(x2) · . . . · ϕn−1(xn) · b

holds. 2

9. Remark: Some old unsolved problems connected with skew elements in

n−ary groups are discussed in [Dudek 2001].

2[Sokolov 1976].
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About embedding of n−groups into groups

1. Proposition [Post 1940]: Let n ≥ 3 and let (Q; A) be an n−group.

Also, let Γ be the set of all sequences over Q of finite length and let the

multiplication ∗ in Γ be defined as the juxtaposition:

(1) ai
1 ∗ bj

1
def
= ai

1, b
j
1

for all ai
1, b

j
1 ∈ Γ; i, j ∈ N ∪ {0}. Further on, let θ be a relation in Γ defined

as the following equivalence:

(2) α θ β
def⇐⇒ (∃γ ∈ Γ)(∃δ ∈ Γ)(∃k ∈ N)(∃l ∈ N)

k

A(γ,α, δ) =
l

A(γ,β, δ)

for all α,β ∈ Γ, where |γ,α, δ| = k(n− 1) + 1 and |γ,β, δ| = l(n− 1) + 1.

Then the following statements holds:

(i) (Γ; ∗) is a (well-known) semigroup with neutral element Ø (empty

sequence).

(ii) Ø θ Ø.

(iii) For all α ∈ Γ\{Ø} the following equivalence holds

α θ Ø ⇔ (∃k ∈ N)(∃y ∈ Q)
k

A(α, y) = y.

[Ø θ α ⇔ (∃k ∈ N)(∃y ∈ Q)
k

A(y, α) = y].

(iv) θ is a congruence relation in (Γ; ∗).
(v) For every α ∈ Γ there is sequence β ∈ Γ such that the following

formula holds

α ∗ β θ Ø.

Sketch of the prof. Firstly we prove the following statements:
◦
1 Let

k

A(ci
1,α, dj

1) =
l

A(ci
1,β, dj

1).
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Then
k+i+j

A (a
i(n−1)
1 , ci

1, α, dj
1, b

j(n−1)
1 ) =

l+i+j

A (a
i(n−1)
1 , ci

1, β, dj
1, b

j(n−1)
1 ),

where a
i(n−1)
1 and b

j(n−1)
1 are arbitrary sequences over Q.

◦
2 Let

k

A(c
i(n−1)+1
1 , ĉi−1

1 ,α, d
j(n−1)+1
1 , d̂j−1

1 ) =
l

A(c
i(n−1)+1
1 , ĉi−1

1 , β, d
j(n−1)+1
1 , d̂j−1

1 ),

where 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n − 1. Then there are c ∈ Q and d ∈ Q

such that the following equality holds
k−i−j

A (c, ci−1
1 , α, d, dj−1

1 ) =
l−i−j

A (c, ci−1
1 ,β, d, dj−1

1 ).
◦
3 Let

k

A(ci
1, a

t
1, d

j
1) =

l

A(ci
1, b

s
1, d

j
1);

i, j, t, s ∈ N. Then
k

A(ĉi+1
1 , at

1, d̂
j−1
1 ) =

l

A(ĉi+1
1 , bs

1, d̂
j−1
1 ) and

k

A(ĉi−1
1 , at

1, d̂
j+1
1 ) =

l

A(ĉi−1
1 , bs

1, d̂
j+1
1 )

◦
4 Let

k

A(ci
1, a

t
1, d

j
1) =

l

A(ci
1, b

s
1, d

j
1);

i, j, t, s ∈ N. Then
k

A(ci
1, a

t
1, d

j

1) =
l

A(ci
1, b

s
1, d

j

1),

where ci
1 and d

j

1, are arbitrary sequences over Q.

Sketch of the proof of
◦
1 :

k

A(ci
1, α, dj

1) =
l

A(ci
1,β, dj

1) ⇒
i

A(a
i(n−1)
1 ,

k

A(ci
1, α, dj

1)) =
i

A(a
i(n−1)
1 ,

l

A(ci
1,β, dj

1))
6.3V I⇒

i+k

A (a
i(n−1)
1 , ci

1, α, dj
1) =

i+l

A (a
i(n−1)
1 , ci

1,β, dj
1) ⇒

j

A(
i+k

A (a
i(n−1)
1 , ci

1,α, dj
1), b

j(n−1)
1 ) =

j

A(
i+l

A (a
i(n−1)
1 , ci

1,β, dj
1), b

j(n−1)
1 )

6.3V I⇒
i+k+j

A (a
i(n−1)
1 , ci

1, α, dj
1), b

j(n−1)
1 ) =

i+l+j

A (a
i(n−1)
1 , ci

1, β, dj
1, b

j(n−1)
1 ).
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Sketch of the proof of
◦
2 :

k

A(c
i(n−1)+1
1 , ĉi−1

1 ,α, d
j(n−1)+1
1 , d̂j−1

1 ) =
l

A(c
i(n−1)+1
1 , ĉi−1

1 ,β, d
j(n−1)+1
1 , d̂j−1

1 )
6.3V I
=⇒

k−i

A (
i

A(c
i(n−1)+1
1 , ĉi−1

1 ,α, d
j(n−1)+1
1 , d̂j−1

1 ) =
l−i

A (
i

A(c
i(n−1)+1
1 , ĉi−1

1 ,β, d
j(n−1)+1
1 , d̂j−1

1 )
6.3V I
=⇒

k−i−j

A (
i

A(c
i(n−1)+1
1 ), ĉi−1

1 ,α,
j

A(d
j(n−1)+1
1 ), d̂j−1

1 ) =
l−i−j

A (
i

A(c
i(n−1)+1
1 ), ĉi−1

1 ,β,
j

A(d
j(n−1)+1
1 ), d̂j−1

1 ) ⇒
k−i−j

A (c, ĉi−1
1 ,α, d, d̂j−1

1 ) =
l−i−j

A (c, ĉi−1
1 ,β, d, d̂j−1

1 ),

where c =
i

A(c
i(n−1)+1
1 ) and d =

j

A(d
j(n−1)+1
1 ).

Sketch of the proof of
◦
3 :

a) j ≥ 2 :
k

A(ci
1, α, dj

1) =
l

A(ci
1,β, dj

1) ⇒
A(e1,

k

A(ci
1,α, dj

1), e
n−1
2 ) = A(e1,

l

A(ci
1, β, dj

1), e
n−1
2 )

6.3V I
=⇒

k+1

A (e1, c
i
1,α, dj−2

1 , dj
j−1, e

n−1
2 ) =

l+1

A (e1, c
i
1,β, dj−2

1 , dj
j−1, e

n−1
2 )

6.3V I
=⇒

k

A(e1, c
i
1, α, dj−2

1 , A(dj
j−1, e

n−1
2 )) =

l

A(e1, c
i
1,β, dj−2

1 , A(dj
j−1, e

n−1
2 )) ⇒

k

A(ĉi+1
1 , α, d̂j−1

1 ) =
l

A(ĉi+1
1 ,β, d̂j−1

1 ),

where ĉi+1
1 = e1, c

i
1 and d̂j−1

1 = dj−2
1 , A(dj

j−1, e
n−1
2 ).

b) j = 1 :
k

A(ci
1, a

t
1, d) =

l

A(ci
1, b

s
1, d) ⇒

A(c,
k

A(ci
1, a

t
1, d), en−3

1 , e(d, en−3
1 )) =

A(c,
l

A(ci
1, b

s
1, d), en−3

1 , e(d, en−3
1 ))

6.3V I
=⇒

k+1

A (c, ci
1, a

t
1, d, en−3

1 , e(d, en−3
1 )) =

l+1

A (c, ci
1, b

s
1, d, en−3

1 , e(d, en−3
1 ))

6.3V I
=⇒

k

A(c, ci
1, a

t−1
1 , A(at, d, en−3

1 , e(d, en−3
1 ))) =

l

A(c, ci
1, b

s−1
1 , A(bs, d, en−3

1 , e(d, en−3
1 )))

2.6II
=⇒

k

A(c, ci
1, a

t−1
1 , at) =

l

A(c, ci
1, b

s−1
1 , bs) ⇒

k

A(ĉi+1
1 , at

1, ∅) =
l

A(ĉi+1
1 , bs

1, ∅).
where ĉi+1 = c, ci

1.
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The proof of the second part of the statement is similar.

Sketch of the proof of
◦
4 :

k

A(ci
1, a

t
1, d

j
1) =

l

A(ci
1, b

s
1, d

j
1) ⇒

t

A(ci
1, E(e

t(n−1)−1
i+1 , ci

1), e
t(n−1)−1
i+1 ,

k

A(ci
1, a

t
1, d

j
1)) =

t

A(ci
1, E(e

t(n−1)−1
i+1 , ci

1), e
t(n−1)−1
i+1 ,

l

A(ci
1, b

s
1, d

j
1))

6.3V I
=⇒

t+k

A (ci
1, E(e

t(n−1)−1
i+1 , ci

1), e
t(n−1)−1
i+1 , ci

1, a
t
1, d

j
1) =

t+l

A (ci
1, E(e

t(n−1)−1
i+1 , ci

1), e
t(n−1)−1
i+1 , ci

1, b
s
1, d

j
1)

6.3IV
=⇒

k

A(ci
1,

t

A(E(e
t(n−1)−1
i+1 , ci

1), e
t(n−1)−1
i+1 , ci

1, a1), a
t
2, d

j
1) =

l

A(ci
1,

t

A(E(e
t(n−1)−1
i+1 , ci

1), e
t(n−1)−1
i+1 , ci

1, b1), b
s
2, d

j
1)

2.1II,6.4V I
=⇒

k

A(ci
1, a1, a

t
2, d

j
1) =

l

A(ci
1, b1, b

s
2, d

j
1) ⇔

k

A(ci
1, a

t
1, d

j
1) =

l

A(ci
1, b

s
1, d

j
1),

where E is an {1, t(n− 1) + 1}−neutral operation of (t(n− 1) + 1)− group;

1 ≤ i ≤ t(n− 1)− 1.

The proof of the second part of the statement is similar.

Sketch of the proof of (ii) :

∅ θ ∅ (2)⇔A(ai
1, ∅, an

i+1) = A(ai
1, ∅, an

i+1)
⇔ A(ai

1) = A(ai
1),

i ∈ {0, . . . , n}; for i = 0, ai
1 = ∅, and for i = n, an

i+1 = ∅.
Sketch of the proof of (iii) :

t

A(α, y) = y
6.4V I⇐⇒ t

A(α,
k

A(x
k(n−1)+1
1 )) =

k

A(x
k(n−1)+1
1 )

6.3V I⇐⇒t+k

A (α, x
k(n−1)+1
1 ) =

k

A(x
k(n−1)+1
1 )

(i)⇐⇒
t+k

A (∅, α, x
k(n−1)+1
1 ) =

k

A(∅, ∅, xk(n−1)+1
1 )

(2)⇐⇒α θ ∅.
An example of a nonempty sequence which is equivalent to the empty

sequence is:
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(1)
a n−2

1 ,
(2)
a n−2

1 , e(
(2)
a n−2

1 ), e(
(1)
a n−2

1 ).

Indeed:
2

A(y,
(1)
a n−2

1 ,
(2)
a n−2

1 , e(
(2)
a n−2

1 ), e(
(1)
a n−2

1 ))
6.3V I
=

A(y,
(1)
a n−3

1 , A(
(1)
a n−2,

(2)
a n−2

1 , e(
(2)
a n−2

1 )), e(
(1)
a n−2

1 ))
3.4III
=

A(y,
(1)
a n−3

1 ,
(1)
a n−2, e(

(1)
a n−2

1 )) =

A(y,
(1)
a n−2

1 , e(
(1)
a n−2

1 ))
2.1II
= y.

Sketch of the proof of (iv) :

a) α θ α
(2)⇐⇒

k

A(δ, α,ϕ) =
k

A(δ,α,ϕ).

b) α θ β
(2)⇐⇒(∃k ∈ N)(∃l ∈ N)(∃γ ∈ Γ)(∃δ ∈ Γ)

k

A(γ,α, δ) =
l

A(γ, β, δ)

⇐⇒ (∃k ∈ N)(∃l ∈ N)(∃γ ∈ Γ)(∃δ ∈ Γ)
l

A(γ,β, δ) =
k

A(γ,α, δ)
(2)⇐⇒β θ α.

c) There exsist k, l, l, t, t ∈ N and δ, δ,ϕ,ϕ ∈ Γ such that the following

sequence of implications equivalences holds:

α θ β ∧ β θ γ
(2)⇐⇒

k

A(δ,α,ϕ) =
l

A(δ,β, ϕ) ∧ l

A(δ,β, ϕ) =
t

A(δ, γ,ϕ)
◦
1−

◦
4

=⇒
k̂

A(δ̂,α, ϕ̂) =
l̂

A(δ̂,β, ϕ̂) ∧
l̂

A(δ̂,β, ϕ̂) =
t

A(δ̂, γ, ϕ̂) ⇒
k̂

A(δ̂,α, ϕ̂) =
t

A(δ̂,γ, ϕ̂)
(2)⇐⇒, α θ γ.

d) There exist k, k, k̂, l, l, l̂, t, t, t̂ ∈ N and γ,γ, γ̂, δ, δ, δ̂ ∈ Γ such that the

following sequence of implications (equivalences) holds:

α θ α ∧ β θ β
(2)⇐⇒

k

A(γ,α, δ) =
l

A(γ,α, δ) ∧
k̂

A(γ̂,β, δ̂) =
l̂

A(γ̂, β, δ̂)
◦
1−

◦
4

=⇒
k

A(γ,α,β, δ) =
l

A(γ,α,β, δ) ∧
l

A(γ,α,β, δ) =
t

A(γ,α,β, δ) ⇒
k

A(γ,α,β, δ) =
t

A(γ,α,β, δ) ⇒
(2)⇐⇒,α ∗ β θ α ∗ β.

Sketch of the proof of (v) :
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Let

α =
(j)
a n−2

1

∣∣∣
t

j=1
, bi

1 (t ∈ N ∪ {0}, 0 ≤ i < n− 2)

be a sequence over Q. Also, let e be {1, n}−neutral operation of the n−grup

(Q; A). Further on, let

ε =
(j)
a n−2

1

∣∣∣
t

j=1
, bi

1, c
n−2
i+1 , e(bi

1, c
n−2
i+1 ), e(

(t)
a n−2

1 ), . . . , e(
(1)
a n−2

1 ).

Then ε θ ∅.
2. Proposition [Post 1940]: Let n ≥ 3, let (Q; A) be an n−grup and let

(Γ; ∗) be the semigroup from Prop. 1. Also, let θ be the congruence relation

in (Γ; ∗) [from Prop. 1]. Finally, let for all C(α), C(β) ∈ Γ/θ

(3) C(α) · C(β)
def
= C(α ∗ β).

Then (Γ/θ; ·) grupa.

Proof. 1) (Γ/θ; ·) is a semigroup [since (Γ; ∗) is a semigroup].

2) C(α) · C(∅)(3)
=C(α ∗ ∅)1(i)

= α.

3) By the proof of 1-(v) we have

C(∅) 1(v)
= C(ε)

(1)
=C(α ∗ cn−2

i+1 , e(bi
1, c

n−2
i+1 ), e(

(t)
a n−2

1 ), . . . , (
(1)
a n−2

1 ))
(3)
=C(α) · C(cn−2

i+1 , e(bi
1, c

n−2
i+1 ), e(

(t)
a n−2

1 ), . . . , (
(1)
a n−2

1 )).

Whence, C(cn−2
i+1 , e(bi

1, c
n−2
i+1 ), e(

(t)
a n−2

1 ), . . . , (
(1)
a n−2

1 )) is the right inverse ele-

ment of the element α with respect to the right neutral element C(∅) of

(Γ/θ; ·).
4) Finally, by 1)-3), we conclude that Prop.2 holds. 2

3. Theorem [Post 1940]: Let n ≥ 3, let (Q; A) be an n−grup and (Γ; ·)
[
def
= (Γ/θ; ·) ] the group from 2. Also, let (Γ;A) be the n−grup defined by

(4) A(αn
1 )

def
= α1 · . . . · αn

for every αn
1 ∈ Γ. Then there is an n−subgroup (Q;A) of the n−grup (Γ;A)

such that (Q;A) and (Q; A) are isomorphic.

Remark: We say that the group (Γ; ·) is a covering grup of an n−grup

(Q; A). Furthermore, Th. 3 has also the following formulation: Every n−grup
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(n ≥ 3) has a covering group.

Proof. Firstly we prove the following statements:

◦1 (Γ;A) is an n−semigroup;

◦2 There exist bijective mapping F of the set Q to the set Q
def
= {C(x)|x ∈

Q} [C(x) ∈ Γ/θ ] such that for all xn
1 ∈ Q the following equality holds

FA(xn
1 ) = A(F (x1), . . . , F (xn)); and

◦3 The n−grupoid (Q;A) [◦2] has an {1, n}−neutral operation E such

that for all an−2
1 ∈ Q the following equality holds

Fe(an−2
1 ) = E(F (a1), . . . , F (an−2)),

where e is an {1, n}−neutral operation of the n−group (Q; A) and F is from
◦2.

Proof of ◦1 : By (4) and by Prop.2.

Proof of ◦2

1) Every a ∈ Γ/θ has at least one sequence of length one.

Indeed:

a) y ∈ C(x) ⇔ y θ x
(2)⇔(∃k ∈ N)(∃α ∈ Γ)(∃β ∈ Γ)

k

A(α, y, β) =
k

A(α, x, β); and

b)
k

A(α, y, β) =
k

A(α, x, β)
6.4V I⇒ y = x.

2) Let

F (x)
def
= C(x)

for all x ∈ Q. Then, by 1), F is a bijection from the set Q to the set Q.

3) Let

A(C(a1), . . . , C(an))
(4)
=C(a1) · . . . · C(an)

for all an
1 ∈ Q. Then

FA(an
1 ) = A(F (a1), . . . , F (an))

for all an
1 ∈ Q.
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Indeed:

a) b = A(an
1 )

1.1I⇐⇒A(b, xn−1
1 ) = A(A(an

1 ), xn−1
1 )

6.3V I⇐⇒A(b, xn−1
1 ) =

2

A(an
1 , x

n−1
1 )

⇐⇒ A(∅, b, xn−1
1 ) =

2

A(∅, an
1 , x

n−1
1 )

(2)⇐⇒b θ an
1 .

b) C(b)
a)
=C(an

1 )
(3)
=C(an

1 ) · . . . · C(an).

c) C(A(an
1 ))

a),b)
==C(an

1 ) · . . . · C(an).

By c), 2) and (4), we have

FA(an
1 ) = A(F (a1), . . . , F (an))

for all an
1 ∈ Q.

Proof of ◦3 :

Let e be an {1, n}−neutral operation of the n−grup (Q; A). By 3.4-III,

we have

(a) A(x, an−2
1 , e(an−2

1 )) = x and

(b) A(e(an−2
1 ), an−2

1 , x) = x

for all x, an−2
1 ∈ Q. Whence, by ◦2, we conclude that the following equalities

hold

(a) = A(F (x), F (a1), . . . , F (an−2), Fe(an−2
1 )) = F (x)

(b) A(Fe(an−2
1 ), F (a1), . . . , F (an−2), F (x)) = F (x)

for all x, an−2
1 ∈ Q.

In addition (by F bijection) let

E(bn−2
1 )

def
= Fe(F−1(b1), . . . , F

−1(bn−2))

for all bn−2
1 ∈ Q, i.e.

(5) Fe(an−2
1 ) = E(F (a1), . . . , F (an−2))

for all an−2
1 ∈ Q. Furthermore, by the substitution of (5) in (a) and (b), we

obtain
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A(y, bn−2
1 , E(bn−2

1 ) = y and

A(E(bn−2
1 ), bn−2

1 , y) = y;

y = F (x), b1 = F (a1), . . . , bn−2 = F (an−2).

Finally, by Th. 2.2-IX and by ◦1−◦ 3, we conclude that Th.3 holds. 2

4. Remark: Let α θ β. Then ||α| − |β|| = t(n− 1),

where t ∈ N ∪ {0}.
Indeed:

By (2) from Prop.1, we have
k

A(γ, α, δ) =
l

A(γ,β, δ),

|γ,α, δ| = k(n− 1) + 1 and

|γ,β, δ| = l(n− 1) + 1.

Also let k ≥ l. Then we obtain:

|γ,α, δ| − |γ,β, δ| = (k − l)(n− l) and

|γ,α, δ| − |γ,β, δ| = |γ|+ |α|+ |δ| − (|γ|+ |β|+ |δ|)
= |α| − |β|.

Finally, whence we conclude that the following equality holds

= ||α| − |β|| = t(n− 1),

where t ∈ N ∪ {0}.
5. Proposition [Post 1940]: Let n ≥ 3, (Q; A) be an n−grup and (Γ; ·)
[
def
= (Γ/θ; ·) ] be a group from Prop.2 [coverning group of an n−group (Q; A)].

Also, let

H
def
= {a|a ⊆ Γ a 3 a ∧ |a| = t(n− 1) ∧ t ∈ N ∪ {0}}.

Then (H; ·) is a normal subgroup of the group (Γ; ·). Moreover, for all a ∈ Q

the following equality holds

aH = Q.

Sketch of the proof.
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a)
(i)
a n−2

1

∣∣∣
k

i=1
∗

(j)

b n−2
1

∣∣∣
l

j=1
=

(i)
a n−2

1

∣∣∣
k

i=1
,

(j)

b n−2
1

∣∣∣
l

j=1
and

|(i)a n−2
1

∣∣∣
k

i=1
,

(j)

b n−2
1

∣∣∣
l

j=1
| = (k + l)(n− 1).

b) Let ε be the neutral element of the group (Γ; ·). Then, for example

(i)
a n−2

1

∣∣∣
t

i=1
, e(

(t)
an−2

1 ), . . . , e(
(1)
an−2

1 );

see (iii). Whence, by

|(i)a n−2
1

∣∣∣
t

i=1
, e(

(t)
an−2

1 ), . . . , e(
(1)
an−2

1 )| = t · (n− 1),

we conclude that ε v H.

c) Let
(i)
a n−2

1

∣∣∣
t

i=1
, bt

1 (t ∈ N ∪ {0})
be an arbitrary sequence from arbitrary a ∈ H.

Then,

- for t < n− 2
(i)
a n−2

1

∣∣∣
t

i=1
, bt

1, c
n−2
t+1 , e(bt

1, c
n−2
t+1 ), e(

(t)
an−2

1 ), . . . , e(
(1)
an−2

1 ) ∈ ε,

- for t = n− 2
(i)
a n−2

1

∣∣∣
t

i=1
, bt

1, e(bt
1, )e(

(t)
an−2

1 ), . . . , e(
(1)
an−2

1 ) ∈ ε and

- for t > n− 2
(i)
a n−2

1

∣∣∣
t

i=1
, bt

1, b
k(n−2)
t+1 , e(bn−2

1 ), . . . , e(b
k(n−2)
(k−1)(n−2)), e(

(t)
an−2

1 ), . . . , e(
(1)
an−2

1 ) ∈ ε.

d) By a)− c), we conclude that (H; ·) is a grup.

e) Let h be an arbitrary sequence from an arbitrary h ∈ H. Also, let a

be an arbitrary sequence from an arbitrary a ∈ Γ, and a−1 ∈ a−1 ∈ Γ. Then:

|a h a−1| ∈ {t(n− 1)|t ∈ N ∪ {0}.

Finally, by propositions 1-5 and the proof of 1-5, we obtain:

6. Theorem [Post 1940]: Let n ≥ 3, let (Q; A)be an n−group, (Γ; ·) its cov-

erning group and (H; ·) a normal subgroup of the group (H; ·) Then:(Γ/H; )
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is a finite cyclic group,Q its generator, |Γ/H| |(n − 1) and for every xn
1 ∈

Q,A(xn
1 ) = x1 · . . . · xn.

Remark: For the proofs of Th.6 see also in books: [Bruck 1958], [Belousov

1972] in [Gal’mak 2003]. Cf. also the book [Kurosh 1974].
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[Ušan 1998/2] J. Ušan, Congruences of n−group and of associated Hosszú-
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[Ušan 1999/3] J. Ušan, Note on (n,m)−groups, Math. Moravica 3(1999),

127-139.
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Proceedings 8th Symposium of Mathematics and its Appli-
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ngs, Filomat (Nǐs), 13(1999), 53-57.
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