The Matrix Transformations on Double Sequence Space of χ_π^2

NAGARAJAN SUBRAMANIAN AND U.K. MISRA

Abstract. Let χ^2 denote the space of all prime sense double gai sequences and Λ^2 the space of all prime sense double analytic sequences. First we show that the set $E = \{s^{(mn)} : m, n = 1, 2, 3, \ldots\}$ is a determining set for χ^2_π. The set of all finite matrices transforming χ^2_π into FK-space Y denoted by $\chi^2_\pi : Y$. We characterize the classes $(\chi^2_\pi : Y)$ when $Y = c_0^2, c^2, \chi^2, \ell^2, \Lambda^2$.

<table>
<thead>
<tr>
<th>χ^2_π</th>
<th>c_0^2</th>
<th>c^2</th>
<th>χ^2</th>
<th>ℓ^2</th>
<th>Λ^2</th>
</tr>
</thead>
</table>

Necessary and sufficient condition on the matrix are obtained.

1. Introduction

Throughout w, χ and Λ denote the classes of all, gai and analytic scalar valued single sequences respectively. We write w^2 for the set of all complex sequences (x_{mn}), where $m, n \in \mathbb{N}$ the set of positive integers. Then w^2 is a linear space under the coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich [2]. Later on it was investigated by Hardy [3], Moricz [4], Moricz and Rhoades [5], Basarir and Solankan [1], Tripathy [6], Colak and Turkmenoglu [7], Turkmenoglu [8], and many others. We need the following inequality in the sequel of the paper. For $a, b, \geq 0$ and $0 < p < 1$, we have

\[(a + b)^p \leq a^p + b^p\]

The double series $\sum_{m,n=1}^{\infty} x_{mn}$ is called convergent if and only if the double sequence. (s_{mn}) is called convergent, where $s_{mn} = \sum_{i,j=1}^{m,n} x_{ij}(m, n = 1, 2, 3, \ldots)$ (see [9]). A sequence $x = (x_{mn})$ is said to be double analytic if $\sup_{m,n} |x_{mn}|^{1/m+n} < \infty$. The vector space of all double analytic sequences

2000 Mathematics Subject Classification. Primary: 40A05, 40C05, 40D05.

Key words and phrases. Determining set, gai sequence, analytic sequence, double sequence.
will be denoted by Λ^2. A sequence $x = (x_{mn})$ is called double gai sequence if $((m + n)! |x_{mn}|)^{1/m+n} \to 0$ as $m, n \to \infty$. The double gai sequences will be denoted by χ^2. Let $\phi = \{\text{all finite sequences}\}$. Consider a double sequence $x = (x_{ij})$. The $(m, n)^{th}$ section $x^{[m,n]}$ of the sequence is defined by $x^{[m,n]} = \sum_{i,j=0}^{m,n} x_{ij} \zeta_{ij}$ for all $m, n \in \mathbb{N}$,

$$\zeta_{mn} = \begin{pmatrix}
0, 0, \ldots, 0, 0, \ldots \\
0, 0, \ldots, 0, 0, \ldots \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0, 0, \ldots, \pi_{mn}, -\pi_{mn}, \ldots \\
0, 0, \ldots, 0, 0, \ldots
\end{pmatrix}$$

with π_{mn} in the $(m, n)^{th}$ position, $-\pi_{mn}$ in the $(m + 1, n + 1)^{th}$ position and zero otherwise. An FK-space (or a metric space) X is said to have AK property if (ζ_{mn}) is a Schauder basis for X. Or equivalently $x^{[m,n]} \to (x_{mn})(m, n \in \mathbb{N})$ are also continuous. If X is a sequence space, we give the following definitions:

(i) $X' = \text{the continuous dual of } X$;
(ii) $X^\alpha = \{a = (a_{mn}) : \sum_{m,n=1}^{\infty} |a_{mn}x_{mn}| < \infty, \text{ for each } x \in X\}$;
(iii) $X^\beta = \{a = (a_{mn}) : \sum_{m,n=1}^{\infty} a_{mn}x_{mn} \text{ is convergent, for each } x \in X\}$;
(iv) $X^\gamma = \{a = (a_{mn}) : m, n \geq 1 \sup_{M,N} |\sum_{m,n=1}^{M,N} a_{mn}x_{mn}| < \infty, \text{ for each } x \in X\}$;
(v) let X be an FK-space $\supset \phi$; then $X^f = \{f(\zeta_{mn}) : f \in X'\}$;
(vi) $X^\Lambda = \{a = (a_{mn}) : \sup_{m,n} |a_{mn}x_{mn}|^{1/m+n} < \infty, \text{ for each } x \in X\}$

$X^\alpha X^\beta, X^\gamma$ are called $\alpha-$ (or Köthe-Toeplitz) dual of X; $\beta-$ (or generalized-Köthe-Toeplitz) dual of X; $\gamma-$dual of X, $\Lambda-$dual of X respectively.

2. Definitions and Preliminaries

$$\chi^2_{\pi} = \{x = (x_{mn}) : \left(\frac{x_{mn}}{\pi_{mn}}\right) \in \chi^2\};$$

$$\Lambda^2_{\pi} = \{x = (x_{mn}) : \left(\frac{x_{mn}}{\pi_{mn}}\right) \in \Lambda^2\}.$$

The space Λ^2_{π} is a metric space with the metric

$$d(x, y) = \sup_{m,n} \left\{\left|\frac{x_{mn} - y_{mn}}{\pi_{mn}}\right|^{1/m+n} : m, n : 1, 2, 3, \ldots \right\}$$

for all $x = \{x_{mn}\}$ and $y = \{y_{mn}\}$ in Λ^2.

The space χ^2_{π} is a metric space with the metric

$$d(x, y) = \sup_{m,n} \left\{\left((m + n)! \left|\frac{x_{mn} - y_{mn}}{\pi_{mn}}\right|\right)^{1/m+n} : m, n : 1, 2, 3, \ldots \right\}$$
for all $x = \{x_{mn}\}$ and $y = \{y_{mn}\}$ in χ^2.

Let X be an BK-space. Then $D = D(X) = \{x \in \phi : \|x\| \leq 1\}$ we do not assume that $X \supset \phi$ (i.e.) $D = \phi \bigcap (\text{unit closed sphere in } X)$.

Let X be an BK space. A subset E of ϕ will be called a determining set for X if $D(X)$ is the absolutely convex hull of E. In respect of a metric space $(X, d), D = \{x \in \phi : d(x, 0) \leq 1\}$.

Given a sequence $x = \{x_{mn}\}$ and an four dimensional infinite matrix

$$A = \left(a_{mn}^{jk} \right), m, n, j, k = 1, 2, \ldots \text{ then } A- \text{transform of } x \text{ is the sequence }$$

$$y = (y_{mn}) \text{ when } y_{mn} = \sum_{n=1}^{\infty} \alpha_{mn}x_{mn} (j, k = 1, 2, \ldots). \text{ Whenever }$$

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \alpha_{mn}x_{mn} \text{ exists. }$$

Let X and Y be FK-spaces. If $y \in Y$ whenever $x \in X$, then the class of all matrices A is denoted by $(X : Y)$.

Lemma 2.1. Let X be a BK-space and E is determining set for X. Let Y be an FK-space and A is an four dimensional infinite matrix. Suppose that either X has AK or A is row finite. Then $A \in (X : Y)$ if and only if (1) The columns of A belong to Y and (2) $A[E]$ is a bounded subset of Y.

3. Main Results

Theorem 3.1. Let E be the set of all sequences in ϕ each of whose non-zero terms is

$$
\begin{pmatrix}
0, & 0, & \cdots & 0, & 0, & \cdots \\
0, & 0, & \cdots & 0, & 0, & \cdots \\
\vdots & \vdots & \ddots & \vdots & \vdots & \\
0, & 0, & \cdots & \frac{\pi_{mn}}{(m+n)!}, & -\frac{\pi_{mn}}{(m+n)!}, & \cdots \\
0, & 0, & \cdots & 0, & 0, & \cdots
\end{pmatrix}
$$

with $\frac{\pi_{mn}}{(m+n)!}$, in the $(m, n)^{th}$, $-\frac{\pi_{mn}}{(m+n)!}$, in the $(m + 1, n + 1)^{th}$ position and zero otherwise. Then E is determining set of $\chi^2\pi$.

Proof. Step 1. Recall that $\chi^2\pi$ is a metric space with the metric

$$d(x, y) = \sup_{mn} \left\{ \left((m + n)! \left| \frac{x_{mn} - y_{mn}}{\pi_{mn}} \right| \right)^{1/m+n} : m, n : 1, 2, 3, \ldots \right\}$$

Let A be the absolutely convex hull of E. Let $x \in A$.

Then $x = \sum_{m=1}^{i} \sum_{n=1}^{j} t_{mn} \pi_{mn} s^{(mn)}$ with

$$\sum_{m,n=1}^{i,j} |t_{mn}| \leq 1.$$

and $s^{(mn)} \in E$.

Then $d(x, 0) \leq |t_{11}| \pi_{11} d(s^{(11)}, 0) + \cdots + |t_{ij}| \pi_{ij} d(s^{(ij)}, 0)$. But $d(s^{(mn)}) = 1$ for $m, n = 1, 2, 3, \ldots, (i, j)$. Hence $d(x, 0) \leq \sum_{m,n=1}^{i,j} |t_{mn}| \leq 1$ by using
(4). Also $x \in \phi$. Hence $x \in D$. Thus

\[(5)\quad A \subset D\]

Step 2: Let $x \in D$

\[\Rightarrow x \in \phi \quad \text{and} \quad d(x, 0) \leq 1.\]

\[x = \begin{pmatrix}
2!x_{11}, & 3!x_{12}, & \cdots & (1 + n)!x_{1n}, & \cdots \\
3!x_{21}, & 4!x_{22}, & \cdots & (2 + n)!x_{2n}, & \cdots \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
(m + 1)!x_{m1}, & (m + 2)!x_{m2}, & \cdots & (m + n)!x_{mn}, & \cdots \\
0, & 0, & \cdots & 0, & \cdots
\end{pmatrix}\]

and

\[(6)\quad \sup \left(\frac{2! |x_{11}|^{1/2}}{0,}, \frac{3! |x_{12}|^{1/3}}{0,}, \cdots \left(\frac{(1 + n)! |x_{1n}|^{1/1+n}}{(m + n)! |x_{mn}|^{1/m+n}}\right)\right)\]

Case (i): Suppose that $2! |x_{11}| \geq \cdots \geq (m + n)! |x_{mn}|$.

Let $\xi_{mn} = \text{Sgn} ((m + n)! x_{mn}) = \frac{(m+n)! |x_{mn}|}{(m+n)! |x_{mn}|}$ for $m, n = 1, 2, \ldots, (i, j)$.

Take

\[S_{k\ell} \pi_{k\ell} = \begin{pmatrix}
\xi_{11}, & \xi_{12}, & \cdots & \xi_{1\ell}, & \cdots \\
\xi_{21}, & \xi_{22}, & \cdots & \xi_{2\ell}, & \cdots \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\xi_{k1}, & \xi_{k2}, & \cdots & \xi_{k\ell}, & \cdots \\
0, & 0, & \cdots & 0, & \cdots
\end{pmatrix}\]

for $k, \ell = 1, 2, 3, \ldots, (i, j)$.

Then $\pi_{k\ell} S_{k\ell} \in E$ for $k, \ell = 1, 2, 3, \ldots, (i, j)$.

Also

\[x = (|2!x_{11} - 3!x_{12}| - |3!x_{21} - 4!x_{22}|) \pi_{11} S_{11} + \cdots\]

\[+ ((m + n)! x_{mn} - (m + n + 1)! x_{mn+1})\]

\[- (m + n + 1)! x_{m+1n} - (m + n + 2)! x_{m+1n+1}) \pi_{mn} S_{mn}\]

so that

\[t_{11} \pi_{11} S_{11} + \cdots + t_{mn} \pi_{mn} S_{mn},\]

\[t_{11} + \cdots + t_{mn} = |2!x_{11} - 3!x_{12}|\]

\[- (m + n + 1)! x_{m+1n} - (m + n + 2)! x_{m+1n+1} = |2!x_{11} - 3!x_{12}|\]

because

\[|(m + n + 1)! x_{m+1n} - (m + n + 2)! x_{m+1n+1}| = 0 \leq 1\]

by using (6).
Hence $x \in A$. Thus $D \subset A$.

Case (ii): Let y be x and let $2!|y_{11}| \geq \cdots \geq (m + n)!|y_{mn}|$. Express y as a member of A as in Case (i). Since E is invariant under permutation of the terms of its members, so is A. Hence $x \in A$. Thus $D \subset A$. Therefore in both cases

$$D \subset A$$

From (5) and (7) $A = D$. Consequently E is a determining set for χ^2_π. This completes the proof. □

Proposition 3.1. χ^2_π has AK.

Proof. Let $x = (x_{mn}) \in \chi^2_\pi$ and take $x^{[mn]} = \sum_{i,j=1}^{m,n} x_{ij}\gamma_{ij}$ for all $m, n \in \mathbb{N}$. Hence

$$d(x, x^{[rs]}) = \sup_{mn} \left\{ \left((m + n)! \left| \frac{x_{mn}}{\pi_{mn}} \right| \right)^{1/(m+n)} : m \geq r + 1, n \geq s + 1 \right\}$$

→ 0 as $m, n \to \infty$

Therefore, $x^{[rs]} \to x$ as $r, s \to \infty$ in χ^2_π. Thus χ^2_π has AK. This completes proof. □

Proposition 3.2. An infinite matrix $A = \left(a_{mn}^{jk} \right)$ is in the class

$$A \in \left(\chi^2_\pi : c^2_0 \right) \iff \lim_{n,k \to \infty} \left(\pi_{mn}a_{mn}^{jk} \right) = 0$$

$$\iff \sup_{mn} \left| \pi_{m1}a_{m1}^{j1} + \cdots + \pi_{mn}a_{mn}^{jk} \right| < \infty.$$

Proof. In Lemma 3 take $X = \chi^2_\pi$ has AK property and take $Y = \left(c^2_0 \right)$ be an FK-space. Further more χ^2_π is a determining set E (as in given Proposition 4). Also $A[E] = A(s^{(mn)}) = \left\{ \left(\pi_{m1}a_{m1}^{j1} + \cdots + \pi_{mn}a_{mn}^{jk} \right) \right\}$. Again by Lemma 3, $A \in \left(\chi^2_\pi : c^2_0 \right)$ if and only if:

(i) The columns of A belong to c^2_0, and

(ii) $A(s^{(mn)})$ is a bounded subset χ^2_π.

But the condition

(i) $\iff \left\{ \pi_{mn}a_{mn}^{jk} : j, k = 1, 2, \cdots \right\}$ is exits for all m, n;

(ii) $\iff \sup_{mn} \left| \pi_{m1}a_{m1}^{j1} + \cdots + \pi_{mn}a_{mn}^{jk} \right| < \infty.$

Hence we conclude that $A \in \left(\chi^2_\pi : c^2_0 \right) \iff$ conditions (8) and (9) are satisfied. □

The following proofs are similar. Hence we omit the proof.

Proposition 3.3. An infinite matrix $A = \left(a_{mn}^{jk} \right)$ is in the class

$$A \in \left(\chi^2_\pi : c^2 \right) \iff \lim_{n,k \to \infty} \left(\pi_{mn}a_{mn}^{jk} \right) \text{ exists} (m, j = 1, 2, 3, \ldots)$$
The Matrix Transformations on Double Sequence Space of χ^2_π

(11) \[\Leftrightarrow \sup_{mn} \left| \pi_{m1}a_{m1}^{j1} + \cdots + \pi_{mn}a_{mn}^{jk} \right| < \infty. \]

Proposition 3.4. An infinite matrix $A = (a_{mn}^{jk})$ is in the class $A \in (\chi^2_\pi : \chi^2_\pi)$ if

(12) \[A \in (\chi^2_\pi : \chi^2_\pi) \Leftrightarrow \sup_{mn} \left(\frac{1}{\pi_{mn}(m+n)!} \left| a_{m1}^{j1} + \cdots + a_{mn}^{jk} \right| \right)^{1/(m+n)} < \infty. \]

(13) \[\Leftrightarrow \lim_{n,k \to \infty} \left(\frac{1}{\pi_{mn}(m+n)!} \left| a_{mn}^{jk} \right| \right)^{1/(m+n)} = 0, \text{ for } m, j = 1, 2, 3, \ldots \]

(14) \[\Leftrightarrow d\left(a_{m1}^{j1}, a_{m2}^{j2}, \ldots, a_{mn}^{jk} \right) \text{ is bounded} \]

for each metric d on χ^2_π and for all m, n.

Proposition 3.5. An infinite matrix $A = (a_{mn}^{jk})$ is in the class $A \in (\chi^2_\pi : \ell^2)$ if

(15) \[A \in (\chi^2_\pi : \ell^2) \Leftrightarrow \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left| a_{mn}^{jk} \right| \text{ converges } (j, k = 1, 2, 3, \ldots) \]

(16) \[\Leftrightarrow \sup_{mn} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left| \pi_{mn}a_{mn}^{jk} \right| < \infty \]

Proposition 3.6. An infinite matrix $A = (a_{mn}^{jk})$ is in the class $A \in (\chi^2_\pi : \Lambda^2)$ if

(17) \[A \in (\chi^2_\pi : \Lambda^2) \Leftrightarrow \sup_{mn} \left(\pi_{mn} \left| \sum_{\gamma=1}^{n} \sum_{\mu=1}^{k} a_{m\gamma}^{j\mu} \right| \right)^{1/(m+n)} < \infty \]

(18) \[\Leftrightarrow d\left(a_{m1}^{j1}, a_{m2}^{j2}, \ldots, a_{mn}^{jk} \right) \text{ is bounded} \]

for each metric d on Λ^2 and for all m, n.

REFERENCES

Nagarajan Subramanian

Department of Mathematics
SASTRA University
Tanjore-613 402
India
E-mail address: nsmaths@yahoo.com

U.K. Misra

Department of Mathematics
Berhampur University
Berhampur-760 007
Orissa
India
E-mail address: umakanta_misra@yahoo.com