Properties of the Quasi-Conformal Curvature Tensor of Kähler-Norden Manifolds

Uday Chand De and Pradip Majhi

Abstract. The object of the present paper is to study quasi-conformally flat and parallel quasi-conformal curvature tensor of a Kähler-Norden manifold. Besides this we also study quasi-conformally semisymmetric Kähler-Norden manifolds. Finally, we mention an example to verify a Theorem of our paper.

1. Introduction

An anti-Kähler or Kähler-Norden manifold means a triple (M^n, J, g) which consists of a smooth manifold M^n of dimension $n = 2m$, an almost complex structure J and an anti-Hermitian metric g such that $\nabla J = 0$ where ∇ is the Levi-Civita connection of g. The metric g is called anti-Hermitian if it satisfies $g(JX, JY) = -g(X, Y)$ for all vector fields X and Y on M^{2m}. Then the metric g has necessarily a neutral signature (m, m) and M^{2m} is a complex manifold and there exists a holomorphic metric on M^{2m} [1]. This fact gives us some topological obstructions to an anti-Kähler manifold, for instance, all its odd Chern numbers vanish because its holomorphic metric gives us a complex isomorphism between the complex tangent bundle and its dual and a compact simply connected Kähler manifold cannot be anti-Kähler because it does not admit a holomorphic metric.

The conditions of the semisymmetry and pseudosymmetry type for the Riemann, Ricci and Weyl curvature tensors of Kählerian and para-Kählerian manifolds were studied in the papers [9, 10, 11, 12] and many others. In the present paper we extend the result of Sluka [5] in a Kähler-Norden manifold. In [4] Sluka constructed some examples of holomorphically projectively flat as well as semisymmetric and locally symmetric Kähler-Norden manifolds. The present paper is organized as follows:

After preliminaries in section 3, we study quasi-conformally flat Kähler-Norden manifolds. In section 4, we consider parallel quasi-conformal Kähler-Norden manifolds. In section 5, we study quasi-conformally semisymmetric...
Kähler-Norden manifolds. Finally, we mention an example to verify the Theorem 4.1.

2. PRELIMINARIES

By a Kählerian manifold with Norden metric (Kähler-Norden in short) [2] we mean a triple \((M, J, g)\), where \(M\) is a connected differentiable manifold of dimension \(n = 2m\), \(J\) is a \((1, 1)\)-tensor field and \(g\) is a pseudo-Riemannian metric on \(M\) satisfying the conditions

\[
J^2 = -I, \quad g(JX, JY) = -g(X, Y), \quad \nabla J = 0
\]

for every \(X, Y \in \chi(M)\) is the Lie algebra of vector fields on \(M\) and \(\nabla\) is the Levi-Civita connection of \(g\).

Let \((M, J, g)\) be a Kähler-Norden manifold. Since in dimension two such a manifold is flat, we assume in the sequel that \(\dim M \geq 4\). Let \(R(X, Y)\) be the curvature operator \([\nabla_X, \nabla_Y] - \nabla_{[X,Y]}\) and let \(\mathcal{R}\) be the Riemann-Christoffel curvature tensor, \(\mathcal{R}(X, Y, Z, W) = g(\mathcal{R}(X, Y)Z, W)\). The Ricci tensor \(S\) is defined as \(S(X, Y) = \text{trace}\{Z \rightarrow \mathcal{R}(Z, X)Y\}\). These tensors have the following properties [1]

\[
\begin{align*}
\mathcal{R}(JX, JY) &= -\mathcal{R}(X, Y), \\
\mathcal{R}(JX, Y) &= \mathcal{R}(X, JY), \\
S(JY, Z) &= \text{trace}\{X \rightarrow \mathcal{R}(JX, Y)Z\}, \\
S(JX, Y) &= S(JY, X), \\
S(JX, JY) &= -S(X, Y).
\end{align*}
\]

Let \(Q\) be the Ricci operator. Then we have \(S(X, Y) = g(QX, Y)\) and

\[
QY = -\sum_i \epsilon_i \mathcal{R}(e_i, Y)e_i,
\]

where \(\{e_1, e_2, \ldots, e_n\}\) is an orthonormal basis and \(\epsilon_i\) are the indicators of \(e_i\), \(\epsilon_i = g(e_i, e_i) = \pm 1\). The notion of a quasi-conformal curvature tensor was given by Yano and Sawaki [6]. The quasi-conformal curvature tensor \(\tilde{C}\) is defined by

\[
\begin{align*}
\tilde{C}(X, Y)Z &= a\mathcal{R}(X, Y)Z + b[S(Y, Z)X - S(X, Z)Y + g(Y, Z)QX \\
&\quad - g(X, Z)QY] - r[\frac{a}{n} - \frac{1}{n-1} + 2b][g(Y, Z)X - g(X, Z)Y],
\end{align*}
\]

where \(a\) and \(b\) are constants and \(\mathcal{R}\), \(Q\) and \(r\) are Riemannain curvature tensor of type \((1, 3)\), the Ricci operator defined by \(g(QX, Y) = S(X, Y)\) and the scalar curvature, respectively. If \(a = 1\) and \(b = -\frac{1}{n-2}\), then (2) takes
the form
\[
\tilde{C}(X,Y)Z = R(X,Y)Z - \frac{1}{n-2} \left[S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX \right.
\]
\[
\left. - g(X,Z)QY \right] + \frac{r}{(n-1)(n-2)} \left[g(Y,Z)X - g(X,Z)Y \right]
\]
\[
= C(X,Y)Z,
\]
where \(C \) is the conformal curvature tensor [8]. Thus the conformal curvature tensor \(C \) is the particular case of the tensor \(\tilde{C} \). For this reason \(\tilde{C} \) is called quasi-conformal curvature tensor. A manifold \((M^n, g) \) \((n > 3) \) shall be called quasi-conformally flat if \(\tilde{C} = 0 \). It is known [3] that a quasi conformally flat manifold is either conformally flat if \(a \neq 0 \) or Einstein if \(a = 0 \) and \(b \neq 0 \). Since they give no restrictions for manifolds if \(a = 0 \) and \(b = 0 \), it is essential for us to consider the case of \(a \neq 0 \) or \(b \neq 0 \).

Using (1) and (2) we have
\[
\sum_i \epsilon_i g(\tilde{C}(J\epsilon_i, JY)\epsilon_i, W) = b \left[2S(JY, JW) - r^* g(JY, W) \right]
\]
\[
- \frac{r}{n} \left[\frac{a}{n-1} + 2b \right] g(JY, JW).
\]
This implies that
\[
\sum_i \epsilon_i \tilde{C}(J\epsilon_i, JY)\epsilon_i = b \left[-2QY - r^* JY \right]
\]
\[
+ \frac{r}{n} \left[-\frac{a}{n-1} + 2b \right] Y,
\]
where \(r^* \) is the *-scalar curvature, which is defined as the trace of \(JQ \). In the above we have applied the identity \(\sum_i \epsilon_i g(J\epsilon_i, \epsilon_i) = 0 \), which is a consequence of the traceless of \(J \).

The holomorphically projective curvature tensor is defined in the following way [4, 7]
\[
P(X,Y) = R(X,Y) - \frac{1}{n-2} (X \wedge_S Y - JX \wedge_S JY),
\]
where the operator \(X \wedge_S Y \) is defined by
\[
(X \wedge_S Y)Z = S(Y,Z)X - S(X,Z)Y, \quad Z \in \chi(M).
\]
We notice, for later use, that this tensor has the following properties
\[
\]
\[
\sum_i \epsilon_i P(e_i, Y, Z, Je_i) = 0, \quad \sum_i \epsilon_i P(X, Y, e_i, e_i) = 0,
\]
A Kähler-Norden manifold \((M, J, g)\) is holomorphically projectively flat if and only if its holomorphically projective curvature tensor \(P \) vanishes identically.
A Riemannian manifold is said to be quasi-conformally semisymmetric if
\(\tilde{\mathcal{C}} = 0 \), where \(\mathcal{C}(X,Y) \) denotes the derivation of the tensor algebra at each point of the manifold for tangent vector fields \(X, Y \).

3. QUASI-CONFORMALLY FLAT KÄHLER-NORDEN MANIFOLDS

In this section we study quasi-conformally flat Kähler-Norden manifolds, that is,
\(\tilde{\mathcal{C}}(X,Y)Z = 0 \). Therefore from (3) we obtain

\[
(8) \quad b[2S(JY,JW) - r^*g(JY,W)] = \frac{r}{n} \left[\frac{a}{n-1} + 2b \right] g(JY,JW),
\]

Using (1) in (8) yields

\[
(9) \quad b[-2S(Y,W) - r^*g(JY,W)] = -\frac{r}{n} \left[\frac{a}{n-1} + 2b \right] g(Y,W),
\]

Contracting (9) with respect to the pair of arguments \(Y, W \) (that is, taking \(Y = W = e_i \) into (9), multiplying by \(\epsilon_i \) and summing up over \(i \in \{1, \ldots, n\} \)), we have

\[
(10) \quad -2br = -\frac{r}{n} \left[\frac{a}{n-1} + 2b \right] n.
\]

This implies

\[
(11) \quad -\frac{a}{n-1}r = 0.
\]

Since \(a \neq 0 \), then from (11) we obtain

\[
(12) \quad r = 0.
\]

Again using (12) in (9) we obtain

\[
(13) \quad S(Y,W) = -\frac{r^*}{2b}g(JY,W).
\]

Using (12), (13) in (2) we have

\[
(14) \quad \mathcal{R}(X,Y)Z = -\frac{r^*}{2a} \left[-g(JY,Z)X + g(JX,Z)Y - g(Y,Z)JX + g(X,Z)JY \right].
\]

Also holomorphically projectively flatness implies from (5)

\[
(15) \quad \mathcal{R}(X,Y)Z = \frac{1}{n-2} \left[S(Y,Z)X - S(X,Z)Y - S(JY,Z)JX + S(JX,Z)JY \right].
\]

Therefore from (13) and (15) it follows that

\[
(16) \quad \mathcal{R}(X,Y)Z = \frac{r^*}{2b(n-2)} \left[-g(JY,Z)X + g(JX,Z)Y - g(Y,Z)JX + g(X,Z)JY \right].
\]
From equations (14) and (16) we obtain \(r^*[a + (n - 2)b] = 0 \). Now, \(r^*[a + (n - 2)b] = 0 \) implies either \(r^* = 0 \) or \(a + (n - 2)b = 0 \). If \(a + (n - 2)b = 0 \), then putting this into (2), we get \(\tilde{C}(X,Y)Z = aC(X,Y)Z \). So the quasi-conformally flatness and conformally flatness are equivalent in this case. Thus in view of the above result we can state the following:

Theorem 3.1. If a quasi-conformally flat Kähler-Norden manifold is holomorphically projectively flat, then quasi-conformally flatness and conformally flatness are equivalent provided \(r^* \neq 0 \).

Corollary 3.1. The Ricci tensor and curvature tensor of a quasi-conformally flat Kähler-Norden manifold \((M,J,g)\) have the shapes (13) and (14), respectively.

4. **Kähler-Norden manifolds \((M,J,g)\) with parallel quasi-conformal curvature tensor**

Assume that the quasi-conformal curvature tensor of a Kähler-Norden manifold is parallel, that is, \(\nabla \tilde{C} = 0 \). From (3) we have

\[
\sum_i \epsilon_i g(\tilde{C}(Je_i, JY)e_i, W) = b[2S(JY, JW) - r^*g(JY, W)] \\
- r \left[\frac{a}{n} + 2b \right] g(JY, JW),
\]

where \(r^* \) is the \(* \)-scalar curvature, which is defined as the trace of \(JQ \). Taking covariant differentiation of (17) and our assumption yields

\[
0 = b[-2(\nabla Z S)(Y, W) - dr^*(Z)g(JY, W)] \\
+ \frac{dr(Z)}{n} \left[\frac{a}{n - 1} + 2b \right] g(Y, W),
\]

since \(S(JY, JW) = -S(Y, W) \) and \(g(JY, JW) = -g(Y, W) \).

Contracting (18) with respect to the pair of arguments \(Y, W \) (that is, taking \(Y = W = e_i \) into (18), multiplying by \(\epsilon_i \) and summing up over \(i \in \{1, \ldots, n\} \)), we have

\[
-2bdr(Z) + \frac{dr(Z)}{n} \left[\frac{a}{n - 1} + 2b \right] n = 0.
\]

Since \(a \neq 0 \), then (19) implies

\[
dr(Z) = 0.
\]

Using (20) in (18) we have

\[
(\nabla Z S)(Y, W) = -\frac{1}{2}dr^*(Z)g(JY, W).
\]

Putting \(Y = JY \) in (21) we obtain

\[
(\nabla Z S)(JY, W) = \frac{1}{2}dr^*(Z)g(Y, W).
\]
Contracting (22) with respect to the pair of arguments Y, W (that is, taking $Y = W = e_i$ into (22), multiplying by ϵ_i and summing up over $i \in \{1, \ldots, n\}$), we have
\begin{equation}
\sum_i \epsilon_i \tilde{C}(Je_i, JY)e_i = b[-2QY - r^*JY] + \frac{r}{n} \left[-\frac{a}{n-1} + 2b \right] Y,
\end{equation}
(23) $dr^*(Z) = 0$.

Again using (20) and (23) in (18) yields
\begin{equation}
(\nabla Z)S(Y, W) = 0.
\end{equation}
(24)

In view of (2), the covariant derivative $\nabla \tilde{C}$ can be expressed in the following form
\begin{equation}
(\nabla W \tilde{C})(X, Y)Z = a(\nabla W R)(X, Y)Z + b[(\nabla W S)(Y, Z)X - (\nabla W S)(X, Z)Y + g(Y, Z)(\nabla W Q)X - g(X, Z)(\nabla W Q)Y].
\end{equation}
(25)

Using (24) in (25) we obtain
\begin{equation}
(\nabla W \tilde{C})(X, Y)Z = a(\nabla W R)(X, Y)Z.
\end{equation}
(26)

Since $a \neq 0$, then in view of the above result we can state the following:

Theorem 4.1. A Kähler-Norden manifold (M, J, g) is quasi-conformally symmetric if and only if it is locally symmetric.

5. **Quasi-conformally semisymmetric Kähler-Norden manifolds**

In this section we study Quasi-conformally semisymmetric Kähler-Norden manifolds. Assume that $\mathcal{R}.\tilde{C} = 0$. From (4) we have
\begin{equation}
\sum_i \epsilon_i \tilde{C}(Je_i, JY)e_i = b[-2QY - r^*JY] + \frac{r}{n} \left[-\frac{a}{n-1} + 2b \right] Y,
\end{equation}
(27)

where r^* is the *-scalar curvature, which is defined as the trace of JQ.

Since $\mathcal{R}.\tilde{C} = 0$, then from (27) we have $\mathcal{R}.Q = 0$ and hence $\mathcal{R}.S = 0$. Again
\begin{equation}
\tilde{C}(X, Y)Z = a\mathcal{R}(X, Y)Z + b[S(Y, Z)X - S(X, Z)Y + g(Y, Z)QX - g(X, Z)QY]
\end{equation}
(28)

where a and b are constants and \mathcal{R}, Q and r are Riemannain curvature tensor of type $(1, 3)$, the Ricci operator defined by $g(QX, Y) = S(X, Y)$ and the scalar curvature, respectively.

By the $\mathcal{R}.\tilde{C} = 0$ and $\mathcal{R}.S = 0$ from (28) we have $\mathcal{R}.\mathcal{R} = 0$.

Conversely,
\begin{equation}
\mathcal{R}.\mathcal{R} = 0 \Rightarrow \mathcal{R}.S = 0 \Rightarrow \mathcal{R}.Q = 0 \Rightarrow \mathcal{R}.\tilde{C} = 0.
\end{equation}
(29)
From the above results we can state the following:

Theorem 5.1. A Kähler-Norden manifold \((M, J, g)\) is quasi-conformally semisymmetric if and only if it is semisymmetric.

In [4], Sluka proved that

Theorem 5.2. [4] A Kähler-Norden manifold \((M, J, g)\) is holomorphically projectively semisymmetric if and only if it is semisymmetric.

In view of Theorems 5.1 and 5.2, we can state the following:

Theorem 5.3. A Kähler-Norden manifold \((M, J, g)\) is quasi-conformally semisymmetric if and only if it is holomorphically projectively semisymmetric.

6. **Example**

In [4] Sluka cited an example of a Kähler-Norden manifold which is locally symmetric. This example verifies our Theorem 4.1.

Acknowledgement: The authors are thankful to the referee for his/her comments and valuable suggestions towards the improvement of this paper.

References

Uday Chand De
Department of Pure Mathematics
University of Calcutta
35, Ballygaunge Circular Road
Kolkata 700019, West Bengal
India
E-mail address: uc_de@yahoo.com

Pradip Majhi
Department of Mathematics
University of North Bengal
Raja Rammohunpur, Darjeeling
Pin-734013, West Bengal
India
E-mail address: mpradipmajhi@gmail.com