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Quadruple Coincidence and Common Quadruple
Fixed Point for Hybrid Pair of Mappings

Under New Contractive Condition

Bhavana Deshpande and Amrish Handa

Abstract. We establish a quadruple coincidence and common quadru-
ple fixed point theorem for hybrid pair of mappings satisfying new con-
tractive condition. It is to be noted that to find quadruple coincidence
points, we do not use the condition of continuity of any mapping in-
volved. An example supporting to our result has also been cited. We
improve, extend and generalize several known results.

1. Introduction and Preliminaries

Let (X, d) be a metric space and CB(X) be the set of all nonempty closed
bounded subsets of X. Let D(x, A) denote the distance from x to A ⊂ X
and H denote the Hausdorff metric induced by d, that is,

D(x,A) = inf
a∈A

d(x, a) and

H(A,B) = max{sup
a∈A

D(a,B), sup
b∈B

D(b, A)}, for all A,B ∈ CB(X).

The study of fixed points for multivalued contractions and non-expansive
mappings using the Hausdorff metric was initiated by Markin [13]. The
existence of fixed points for various multivalued contractive mappings has
been studied by many authors under different conditions. The theory of
multivalued mappings has applications in control theory, convex optimiza-
tion, differential inclusion and economics. For details, see [3,4,10,11,16] and
the reference therein.

Bhaskar and Lakshmikantham [2] established some coupled fixed point
theorems and apply these to study the existence and uniqueness of solu-
tion for periodic boundary value problems. Lakshmikantham and Ciric [12]
proved coupled coincidence and common coupled fixed point theorems for
nonlinear contractive mappings in partially ordered complete metric spaces
and extended the results of Bhaskar and Lakshmikantham [2].
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74 A Common Fixed Point Theorem

Karapinar [7] introduced the concept of quadruple fixed point for single
valued mappings in partially ordered metric spaces and established some
quadruple fixed point theorems.

For more details on quadruple fixed point theory, see [1, 5, 6, 8, 9, 14].
Samet and Vetro [15] introduced the notion of fixed point of N order in case
of single-valued mappings. In particular for N = 4 (quadruple case), we
have the following definition:

Definition 1.1. Let X be a non-empty set and F : X4 → X be a given
mapping. An element (x, y, z, w) ∈ X4 is called a quadruple fixed point of
the mapping F if

F (x, y, z, w) = x, F (y, z, w, x) = y,

F (z, w, x, y) = z, F (w, x, y, z) = w.

These concepts were extended by Deshpande and Handa [4] to multi-
valued mappings and obtained quadruple coincidence points and common
quadruple fixed point theorems involving hybrid pair of mappings under
ϕ − ψ contraction. In [4], Deshpande and Handa introduced the following
for multivalued mappings:

Definition 1.2. Let X be a nonempty set, F : X4 → 2X (a collection of all
nonempty subsets of X) be a multivalued mapping and g be a self-mapping
on X. An element (x, y, z, w) ∈ X4 is called

(1) A quadruple fixed point of F if x ∈ F (x, y, z, w), y ∈ F (y, z, w, x),
z ∈ F (z, w, x, y) and w ∈ F (w, x, y, z).

(2) A quadruple coincidence point of hybrid pair {F, g} if g(x) ∈ F (x, y, z, w),
g(y) ∈ F (y, z, w, x), g(z) ∈ F (z, w, x, y) and g(w) ∈ F (w, x, y, z).

(3) A common quadruple fixed point of hybrid pair {F, g} if x = g(x) ∈
F (x, y, z, w), y = g(y) ∈ F (y, z, w, x), z = g(z) ∈ F (z, w, x, y) and
w = g(w) ∈ F (w, x, y, z).

We denote the set of quadruple coincidence points of mappings F and g
by C{F, g}. Note that if (x, y, z, w) ∈ C{F, g}, then (y, z, w, x), (z, w, x, y)
and (w, x, y, z) are also in C{F, g}.

Definition 1.3. Let F : X4 → 2X be a multivalued mapping and g be
a self-mapping on X. The hybrid pair {F, g} is called w−compatible if
g(F (x, y, z, w)) ⊆ F (gx, gy, gz, gw) whenever (x, y, z, w) ∈ C{F, g}.

Definition 1.4. Let F : X4 → 2X be a multivalued mapping and g be a
self-mapping on X. The mapping g is called F−weakly commuting at some
point (x, y, z, w) ∈ X4 if g2x ∈ F (gx, gy, gz, gw), g2y ∈ F (gy, gz, gw, gx),
g2z ∈ F (gz, gw, gx, gy) and g2w ∈ F (gw, gx, gy, gz).

Lemma 1.1. Let (X, d) be a metric space. Then, for each a ∈ X and
B ∈ CB(X), there is b0 ∈ B such that D(a,B) = d(a, b0), where D(a,B) =
infb∈B d(a, b).
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In this paper, we establish a quadruple coincidence and common quadru-
ple fixed point theorem for hybrid pair of mappings satisfying new contrac-
tive condition. It is to be noted that to find quadruple coincidence points, we
do not use the condition of continuity of any mapping involved. Our result
improve, extend, and generalize the results of Bhaskar and Lakshmikantham
[2] and Lakshmikantham and Ciric [12]. An example to validate our result
has also been demonstrated.

2. Main Results

Let Φ denote the set of all functions ϕ : [0,+∞)→ [0,+∞) satisfying
(iϕ) ϕ is non-decreasing,

(iiϕ) ϕ(t) < t for all t > 0,

(iiiϕ) lim
r→t+

ϕ(r) < t for all t > 0

and Ψ denote the set of all functions ψ : [0,+∞)→ [0, 1) which satisfies
(iψ) ψ is continuous,

(iiψ) ψ(t) < t for all t > 0.
Note that, by (iψ) and (iiψ) we have that ψ(t) = 0 if and only if t = 0.
For simplicity, we define the following:

(A)

M(x, y, z, w, p, q, r, s)

= min


D(gx, F (x, y, z, w)), D(gp, F (p, q, r, s)),

. . . , D(gw, F (w, x, y, z)), D(gs, F (s, p, q, r)),
D(gx, F (p, q, r, s)), D(gp, F (x, y, z, w)),

. . . , D(gw, F (s, p, q, r)), D(gs, F (w, x, y, z))

 ,

(B)

m(x, y, z, w, p, q, r, s)

= min


D(x, F (x, y, z, w)), D(p, F (p, q, r, s)),

. . . , D(w,F (w, x, y, z)), D(s, F (s, p, q, r)),
D(x, F (p, q, r, s)), D(p, F (x, y, z, w)),

. . . , D(w,F (s, p, q, r)), D(s, F (w, x, y, z))

 .

Theorem 2.1. Let (X, d) be a metric space. Assume F : X4 → CB(X)
and g : X → X be two mappings satisfying

(1)
H(F (x, y, z, w), F (p, q, r, s))

≤ ϕ
[
max

{
d(gx, gp), d(gy, gq),
d(gz, gr), d(gw, gs)

}]
+ ψ [M(x, y, z, w, p, q, r, s)] ,

for all x, y, z, w, p, q, r, s ∈ X, where ϕ ∈ Φ and ψ ∈ Ψ. Furthermore assume
that F (X4) ⊆ g(X) and g(X) is a complete subset of X. Then F and g have
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a quadruple coincidence point. Moreover, F and g have a common quadruple
fixed point, if one of the following conditions holds:

(a) F and g are w−compatible. lim
n→∞

gnx = p, lim
n→∞

gny = q, lim
n→∞

gnz =

r and lim
n→∞

gnw = s for some (x, y, z, w) ∈ C{F, g} and for some
p, q, r, s ∈ X and g is continuous at p, q, r and s.

(b) g is F−weakly commuting for some (x, y, z, w) ∈ C{F, g} and gx,
gy, gz and gw are fixed points of g, that is, g2x = gx, g2y = gy,
g2z = gz and g2w = gw.

(c) g is continuous at x, y, z and w. lim
n→∞

gnp = x, lim
n→∞

gnq = y,
lim
n→∞

gnr = z and lim
n→∞

gns = w for some (x, y, z, w) ∈ C{F, g} and
for some p, q, r, s ∈ X.

(d) g(C{F, g}) is a singleton subset of C{F, g}.

Proof. Let x0, y0, z0, w0 ∈ X be arbitrary. Then F (x0, y0, z0, w0), F (y0, z0,
w0, x0), F (z0, w0, x0, y0) and F (w0, x0, y0, z0) are well defined. Choose
gx1 ∈ F (x0, y0, z0, w0), gy1 ∈ F (y0, z0, w0, x0), gz1 ∈ F (z0, w0, x0, y0) and
gw1 ∈ F (w0, x0, y0, z0), because F (X4) ⊆ g(X). Since F : X4 → CB(X),
therefore by Lemma 1.1, there exist u1 ∈ F (x1, y1, z1, w1), u2 ∈ F (y1, z1,
w1, x1), u3 ∈ F (z1, w1, x1, y1) and u4 ∈ F (w1, x1, y1, z1) such that

d(gx1, u1) ≤ H(F (x0, y0, z0, w0), F (x1, y1, z1, w1)),

d(gy1, u2) ≤ H(F (y0, z0, w0, x0), F (y1, z1, w1, x1)),

d(gz1, u3) ≤ H(F (z0, w0, x0, y0), F (z1, w1, x1, y1)),

d(gw1, u4) ≤ H(F (w0, x0, y0, z0), F (w1, x1, y1, z1)).

Since F (X4) ⊆ g(X), there exist x2, y2, z2, w2 ∈ X such that u1 = gx2,
u2 = gy2, u3 = gz2 and u4 = gw2. Thus

d(gx1, gx2) ≤ H(F (x0, y0, z0, w0), F (x1, y1, z1, w1)),

d(gy1, gy2) ≤ H(F (y0, z0, w0, x0), F (y1, z1, w1, x1)),

d(gz1, gz2) ≤ H(F (z0, w0, x0, y0), F (z1, w1, x1, y1)),

d(gw1, gw2) ≤ H(F (w0, x0, y0, z0), F (w1, x1, y1, z1)).

Continuing this process, we obtain sequences {xn}, {yn}, {zn} and {wn} in
X such that for all n ∈ N, we have gxn+1 ∈ F (xn, yn, zn, wn), gyn+1 ∈ F (yn,
zn, wn, xn), gzn+1 ∈ F (zn, wn, xn, yn) and gwn+1 ∈ F (wn, xn, yn, zn) such
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that

d(gxn, gxn+1)

≤ H(F (xn−1, yn−1, zn−1, wn−1), F (xn, yn, zn, wn))

≤ ϕ
[
max

{
d(gxn−1, gxn), d(gyn−1, gyn),
d(gzn−1, gzn), d(gwn−1, gwn)

}]
+ ψ [M(xn−1, yn−1, zn−1, wn−1, xn, yn, zn, wn)]

≤ ϕ
[
max

{
d(gxn−1, gxn), d(gyn−1, gyn),
d(gzn−1, gzn), d(gwn−1, gwn)

}]
.

Thus

d(gxn, gxn+1) ≤ ϕ
[
max

{
d(gxn−1, gxn), d(gyn−1, gyn),
d(gzn−1, gzn), d(gwn−1, gwn)

}]
.

Similarly

d(gyn, gyn+1) ≤ ϕ
[
max

{
d(gxn−1, gxn), d(gyn−1, gyn),
d(gzn−1, gzn), d(gwn−1, gwn)

}]
,

d(gzn, gzn+1) ≤ ϕ
[
max

{
d(gxn−1, gxn), d(gyn−1, gyn),
d(gzn−1, gzn), d(gwn−1, gwn)

}]
,

d(gwn, gwn+1) ≤ ϕ
[
max

{
d(gxn−1, gxn), d(gyn−1, gyn),
d(gzn−1, gzn), d(gwn−1, gwn)

}]
.

Combining them, we get

(2)
max

{
d(gxn, gxn+1), d(gyn, gyn+1),
d(gzn, gzn+1), d(gwn, gwn+1)

}
≤ ϕ

[
max

{
d(gxn−1, gxn), d(gyn−1, gyn),
d(gzn−1, gzn), d(gwn−1, gwn)

}]
,

which implies, by (iiϕ), that

max

{
d(gxn, gxn+1), d(gyn, gyn+1),
d(gzn, gzn+1), d(gwn, gwn+1)

}
< max

{
d(gxn−1, gxn), d(gyn−1, gyn),
d(gzn−1, gzn), d(gwn−1, gwn)

}
.

This shows that the sequence {δn}∞n=0 defined by δn = max{d(gxn, gxn+1),
d(gyn, gyn+1), d(gzn, gzn+1), d(gwn, gwn+1)} is a decreasing sequence of
positive numbers. Then there exists δ ≥ 0 such that

(3) lim
n→∞

δn = lim
n→∞

max

{
d(gxn, gxn+1), d(gyn, gyn+1),
d(gzn, gzn+1), d(gwn, gwn+1)

}
= δ.

We shall prove that δ = 0. Suppose that δ > 0. Letting n → ∞ in (2), by
using (3) and (iiiϕ), we get

δ ≤ lim
n→∞

ϕ(δn) = lim
δn→δ+

ϕ(δn) < δ,
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which is a contradiction. Hence

(4) lim
n→∞

δn = lim
n→∞

max

{
d(gxn, gxn+1), d(gyn, gyn+1),
d(gzn, gzn+1), d(gwn, gwn+1)

}
= 0.

We now prove that {gxn}∞n=0, {gyn}∞n=0, {gzn}∞n=0 and {gwn}∞n=0 are Cauchy
sequences in (X, d). Suppose, to the contrary, that one of the sequences is
not a Cauchy sequence. Then there exists an ε > 0 for which we can find sub-
sequences {gxn(k)}, {gxm(k)} of {gxn}∞n=0, {gyn(k)}, {gym(k)} of {gyn}∞n=0,
{gzn(k)}, {gzm(k)} of {gzn}∞n=0 and {gwn(k)}, {gwm(k)} of {gwn}∞n=0 such
that

(5) max

{
d(gxn(k), gxm(k)), d(gyn(k), gym(k)),
d(gzn(k), gzm(k)), d(gwn(k), gwm(k))

}
≥ ε, k = 1, 2, . . .

We can choose n(k) to be the smallest positive integer satisfying (5), so

(6) max

{
d(gxn(k)−1, gxm(k)), d(gyn(k)−1, gym(k)),
d(gzn(k)−1, gzm(k)), d(gwn(k)−1, gwm(k))

}
< ε.

By (5) and (6) and the triangle inequality, we have

ε ≤ rk = max

{
d(gxn(k), gxm(k)), d(gyn(k), gym(k)),
d(gzn(k), gzm(k)), d(gwn(k), gwm(k))

}
≤ max

{
d(gxn(k), gxn(k)−1), d(gyn(k), gyn(k)−1),
d(gzn(k), gzn(k)−1), d(gwn(k), gwn(k)−1)

}
+ max

{
d(gxn(k)−1, gxm(k)), d(gyn(k)−1, gym(k)),
d(gzn(k)−1, gzm(k)), d(gwn(k)−1, gwm(k))

}
< max

{
d(gxn(k), gxn(k)−1), d(gyn(k), gyn(k)−1),
d(gzn(k), gzn(k)−1), d(gwn(k), gwn(k)−1)

}
+ ε.

Letting n→∞ in the above inequality and using (4), we get

(7) lim
k→∞

rk = lim
k→∞

max

{
d(gxn(k), gxm(k)), d(gyn(k), gym(k)),
d(gzn(k), gzm(k)), d(gwn(k), gwm(k))

}
= ε.

By the triangle inequality, we have

rk = max

{
d(gxn(k), gxm(k)), d(gyn(k), gym(k)),
d(gzn(k), gzm(k)), d(gwn(k), gwm(k))

}
≤ max

{
d(gxn(k), gxn(k)+1), d(gyn(k), gyn(k)+1),
d(gzn(k), gzn(k)+1), d(gwn(k), gwn(k)+1)

}
+ max

{
d(gxn(k)+1, gxm(k)+1), d(gyn(k)+1, gym(k)+1),
d(gzn(k)+1, gzm(k)+1), d(gwn(k)+1, gwm(k)+1)

}
+ max

{
d(gxm(k)+1, gxm(k)), d(gym(k)+1, gym(k)),
d(gzm(k)+1, gzm(k)), d(gwm(k)+1, gwm(k))

}
≤ δn(k) + δm(k) + max

{
d(gxn(k)+1, gxm(k)+1), d(gyn(k)+1, gym(k)+1),
d(gzn(k)+1, gzm(k)+1), d(gwn(k)+1, gwm(k)+1)

}
.
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Thus

(8)
rk ≤ δn(k) + δm(k)

+ max

{
d(gxn(k)+1, gxm(k)+1), d(gyn(k)+1, gym(k)+1),
d(gzn(k)+1, gzm(k)+1), d(gwn(k)+1, gwm(k)+1)

}
.

Since

gxn(k)+1 ∈ F (xn(k), yn(k), zn(k), wn(k)),

gxm(k)+1 ∈ F (xm(k), ym(k), zm(k), wm(k)),

gyn(k)+1 ∈ F (yn(k), zn(k), wn(k), xn(k)),

gym(k)+1 ∈ F (ym(k), zm(k), wm(k), xm(k)),

gzn(k)+1 ∈ F (zn(k), wn(k), xn(k), yn(k)),

gzm(k)+1 ∈ F (zm(k), wm(k), xm(k), ym(k)),

gwn(k)+1 ∈ F (wn(k), xn(k), yn(k), zn(k)) and
gwm(k)+1 ∈ F (wm(k), xm(k), ym(k), zm(k)),

therefore by (1) and triangle inequality, we have

d(gxn(k)+1, gxm(k)+1)

≤ H(F (xn(k), yn(k), zn(k), wn(k)), F (xm(k), ym(k), zm(k), wm(k)))

≤ ϕ
[
max

{
d(gxn(k), gxm(k)), d(gyn(k), gym(k)),
d(gzn(k), gzm(k)), d(gwn(k), gwm(k))

}]
+ ψ

[
M

(
xn(k), yn(k), zn(k), wn(k),
xm(k), ym(k), zm(k), wm(k)

)]
≤ ϕ(rk) + ψ

[
M

(
xn(k), yn(k), zn(k), wn(k),
xm(k), ym(k), zm(k), wm(k)

)]
.

Thus

d(gxn(k)+1, gxm(k)+1) ≤ ϕ(rk) + ψ

[
M

(
xn(k), yn(k), zn(k), wn(k),
xm(k), ym(k), zm(k), wm(k)

)]
.

Similarly

d(gyn(k)+1, gym(k)+1) ≤ ϕ(rk) + ψ

[
M

(
xn(k), yn(k), zn(k), wn(k),
xm(k), ym(k), zm(k), wm(k)

)]
,

d(gzn(k)+1, gzm(k)+1) ≤ ϕ(rk) + ψ

[
M

(
xn(k), yn(k), zn(k), wn(k),
xm(k), ym(k), zm(k), wm(k)

)]
,

d(gwn(k)+1, gwm(k)+1) ≤ ϕ(rk) + ψ

[
M

(
xn(k), yn(k), zn(k), wn(k),
xm(k), ym(k), zm(k), wm(k)

)]
.
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Combining them, we get

(9)
max

{
d(gxn(k)+1, gxm(k)+1), d(gyn(k)+1, gym(k)+1),
d(gzn(k)+1, gzm(k)+1), d(gwn(k)+1, gwm(k)+1)

}
≤ ϕ(rk) + ψ

[
M

(
xn(k), yn(k), zn(k), wn(k),
xm(k), ym(k), zm(k), wm(k)

)]
.

By (8) and (9), we get

rk ≤ δn(k) + δm(k) + ϕ(rk) + ψ

[
M

(
xn(k), yn(k), zn(k), wn(k),
xm(k), ym(k), zm(k), wm(k)

)]
.

Letting k → ∞ in the above inequality, by using (4), (7), (A), (iψ), (iiψ)
and (iiiϕ), we get

ε ≤ 0 + 0 + lim
k→∞

ϕ(rk) + 0 ≤ lim
rk→ε+

ϕ(rk) < ε,

which is a contradiction. This shows that {gxn}∞n=0, {gyn}∞n=0, {gzn}∞n=0 and
{gwn}∞n=0 are Cauchy sequences in g(X). Since g(X) is complete, therefore
there exist x, y, z, w ∈ X such that

(10)
lim
n→∞

gxn = gx, lim
n→∞

gyn = gy,

lim
n→∞

gzn = gz and lim
n→∞

gwn = gw.

Now, since gxn+1 ∈ F (xn, yn, zn, wn), gyn+1 ∈ F (yn, zn, wn, xn), gzn+1 ∈
F (zn, wn, xn, yn) and gwn+1 ∈ F (wn, xn, yn, zn), therefore by using condi-
tion (1), we get

D(gxn+1, F (x, y, z, w))

≤ H(F (xn, yn, zn, wn), F (x, y, z, w))

≤ ϕ [max {d(gxn, gx), d(gyn, gy), d(gzn, gz), d(gwn, gw)}]
+ ψ [M (xn, yn, zn, wn, x, y, z, w)] .

Letting n → ∞ in the above inequality, by using (10), (A), (iψ), (iiψ) and
(iiiϕ), we get

D(gx, F (x, y, z, w)) ≤ lim
t→0+

ϕ(t) + 0 = 0 + 0 = 0,

which implies that
D(gx, F (x, y, z, w)) = 0.

Similarly, we can get

D(gy, F (y, z, w, x)) = 0,

D(gz, F (z, w, x, y)) = 0,

D(gw, F (w, x, y, z)) = 0,
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it follows that

gx ∈ F (x, y, z, w), gy ∈ F (y, z, w, x),

gz ∈ F (z, w, x, y), gw ∈ F (w, x, y, z),

that is, (x, y, z, w) is a quadruple coincidence point of F and g.
Suppose now that (a) holds. Assume that for some (x, y, z, w) ∈ C{F, g}

(11) lim
n→∞

gnx = p, lim
n→∞

gny = q, lim
n→∞

gnz = r and lim
n→∞

gnw = s,

where p, q, r, s ∈ X. Since g is continuous at p, q, r and s, we have, by (11),
that p, q, r and s are fixed points of g, that is,

(12) gp = p, gq = q, gr = r and gs = s.

As F and g are w−compatible, so for all n ≥ 1

(13)

gnx ∈ F (gn−1x, gn−1y, gn−1z, gn−1w),

gny ∈ F (gn−1y, gn−1z, gn−1w, gn−1x),

gnz ∈ F (gn−1z, gn−1w, gn−1x, gn−1y),

gnw ∈ F (gn−1w, gn−1x, gn−1y, gn−1z).

By using (1) and (13), we obtain

D(gnx, F (p, q, r, s))

≤ H(F (gn−1x, gn−1y, gn−1z, gn−1w), F (p, q, r, s))

≤ ϕ [max {d(gnx, gp), d(gny, gq), d(gnz, gr), d(gnw, gs)}]
+ ψ

[
M
(
gn−1x, gn−1y, gn−1z, gn−1w, p, q, r, s

)]
.

On taking limit as n→∞ in the above inequality, by using (11), (12), (A),
(iψ), (iiψ) and (iiiϕ), we get

D(gp, F (p, q, r, s)) ≤ lim
t→0+

ϕ(t) + 0 = 0 + 0 = 0,

which implies that

D(gp, F (p, q, r, s)) = 0.

Similarly we can get

D(gq, F (q, r, s, p)) = D(gr, F (r, s, p, q)) = D(gs, F (s, p, q, r)) = 0,

which implies that

(14)
gp ∈ F (p, q, r, s), gq ∈ F (q, r, s, p),

gr ∈ F (r, s, p, q), gs ∈ F (s, p, q, r).
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By (12) and (14), we get

p = gp ∈ F (p, q, r, s),

q = gq ∈ F (q, r, s, p),

r = gr ∈ F (r, s, p, q),

s = gs ∈ F (s, p, q, r),

that is, (p, q, r, s) is a common quadruple fixed point of F and g.
Suppose now that (b) holds. Assume that for some (x, y, z, w) ∈ C{F, g},

g is F−weakly commuting, that is,

g2x ∈ F (gx, gy, gz, gw), g2y ∈ F (gy, gz, gw, gx),

g2z ∈ F (gz, gw, gx, gy), g2w ∈ F (gw, gx, gy, gz)

and
g2x = gx, g2y = gy, g2z = gz, g2w = gw.

Thus

gx = g2x ∈ F (gx, gy, gz, gw), gy = g2y ∈ F (gy, gz, gw, gx),

gz = g2z ∈ F (gz, gw, gx, gy), gw = g2w ∈ F (gw, gx, gy, gz),

that is, (gx, gy, gz, gw) is a common quadruple fixed point of F and g.
Suppose now that (c) holds. Assume that for some (x, y, z, w) ∈ C{F, g}

and for some p, q, r, s ∈ X, lim
n→∞

gnp = x, lim
n→∞

gnq = y, lim
n→∞

gnr = z and
lim
n→∞

gns = w. Since g is continuous at x, y, z and w, therefore x, y, z
and w are fixed points of g, that is, gx = x, gy = y, gz = z and gw = w.
Since (x, y, z, w) ∈ C{F, g}. Therefore, we get x = gx ∈ F (x, y, z, w),
y = gy ∈ F (y, z, w, x), z = gz ∈ F (z, w, x, y), w = gw ∈ F (w, x, y, z), that
is, (x, y, z, w) is a common quadruple fixed point of F and g.

Finally, suppose that (d) holds. Let g(C{F, g}) = {(x, x, x, x)}. Then
{x} = {gx} = F (x, x, x, x). Hence (x, x, x, x) is quadruple fixed point of F
and g. �

Example 2.1. Suppose that X = [0, 1], equipped with the metric d : X ×
X → [0,+∞) defined by d(x, y) = max{x, y} and d(x, x) = 0 for all x, y ∈
X. Let F : X ×X ×X → CB(X) be defined as

F (x, y, z, w) =

{
{0}, for x, y, z, w = 1[

0, x
2+y2+z2+w2

8

]
, for x, y, z, w ∈ [0, 1)

and g : X → X be defined as

g(x) = x2, for all x ∈ X.
Define ϕ : [0, +∞)→ [0,+∞) by

ϕ(t) =

{
t
2 , for t 6= 1
3
4 , for t = 1
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and ψ : [0,+∞)→ [0, 1) by

ψ(t) =
t

4
, for t ≥ 0.

Now, for all x, y, z, w, p, q, r, s ∈ X with x, y, z, w, p, q, r, s ∈ [0, 1), we have
Case (a). If x2 + y2 + z2 + w2 = p2 + q2 + r2 + s2, then

H(F (x, y, z, w), F (p, q, r, s))

=
p2 + q2 + r2 + s2

8

≤ 1

8
max{x2, p2}+

1

8
max{y2, q2}+

1

8
max{z2, r2}+

1

8
max{w2, s2}

≤ 1

8
d(gx, gp) +

1

8
d(gy, gq) +

1

8
d(gz, gr) +

1

8
d(gw, gs)

≤ 1

8
max {d(gx, gp), d(gy, gq), d(gz, gr), d(gw, gs)}

+
1

8
max {d(gx, gp), d(gy, gq), d(gz, gr), d(gw, gs)}

+
1

8
max {d(gx, gp), d(gy, gq), d(gz, gr), d(gw, gs)}

+
1

8
max {d(gx, gp), d(gy, gq), d(gz, gr), d(gw, gs)}

≤ 1

2
max {d(gx, gp), d(gy, gq), d(gz, gr), d(gw, gs)}

≤ ϕ [max {d(gx, gp), d(gy, gq), d(gz, gr), d(gw, gs)}]
+ ψ [M (x, y, z, w, p, q, r, s)] .

Case (b). If x2 + y2 + z2 +w2 6= p2 + q2 + r2 + s2 with x2 + y2 + z2 +w2 <
p2 + q2 + r2 + s2, then

H(F (x, y, z, w), F (p, q, r, s))

=
p2 + q2 + r2 + s2

8

≤ 1

8
max{x2, p2}+

1

8
max{y2, q2}+

1

8
max{z2, r2}+

1

8
max{w2, s2}

≤ 1

8
d(gx, gp) +

1

8
d(gy, gq) +

1

8
d(gz, gr) +

1

8
d(gw, gs)

≤ 1

8
max {d(gx, gp), d(gy, gq), d(gz, gr), d(gw, gs)}
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+
1

8
max {d(gx, gp), d(gy, gq), d(gz, gr), d(gw, gs)}

+
1

8
max {d(gx, gp), d(gy, gq), d(gz, gr), d(gw, gs)}

+
1

8
max {d(gx, gp), d(gy, gq), d(gz, gr), d(gw, gs)}

≤ 1

2
[max {d(gx, gp), d(gy, gq), d(gz, gr), d(gw, gs)}]

≤ ϕ [max {d(gx, gp), d(gy, gq), d(gz, gr), d(gw, gs)}]
+ ψ [M (x, y, z, w, p, q, r, s)] .

Similarly, we obtain the same result for p2 +q2 +r2 +s2 < x2 +y2 +z2 +w2.
Thus the contractive condition (1) is satisfied for all x, y, z, w, p, q, r, s ∈ X
with x, y, z, w, p, q, r, s ∈ [0, 1). Again, for all x, y, z, w, p, q, r, s ∈ X with
x, y, z, w ∈ [0, 1) and p, q, r, s = 1, we have

H(F (x, y, z, w), F (p, q, r, s))

=
x2 + y2 + z2 + w2

8

≤ 1

8
max{x2, p2}+

1

8
max{y2, q2}+

1

8
max{z2, r2}+

1

8
max{w2, s2}

≤ 1

8
d(gx, gp) +

1

8
d(gy, gq) +

1

8
d(gz, gr) +

1

8
d(gw, gs)

≤ 1

8
max {d(gx, gp), d(gy, gq), d(gz, gr), d(gw, gs)}

+
1

8
max {d(gx, gp), d(gy, gq), d(gz, gr), d(gw, gs)}

+
1

8
max {d(gx, gp), d(gy, gq), d(gz, gr), d(gw, gs)}

+
1

8
max {d(gx, gp), d(gy, gq), d(gz, gr), d(gw, gs)}

≤ 1

2
[max {d(gx, gp), d(gy, gq), d(gz, gr), d(gw, gs)}]

≤ ϕ [max {d(gx, gp), d(gy, gq), d(gz, gr), d(gw, gs)}]
+ ψ [M (x, y, z, w, p, q, r, s)] .

Thus the contractive condition (1) is satisfied for all x, y, z, w, p, q, r, s ∈ X
with x, y, z, w ∈ [0, 1) and p, q, r, s = 1. Similarly, we can see that the
contractive condition (1) is satisfied for all x, y, z, w, p, q, r, s ∈ X with
x, y, z, w, p, q, r, s = 1. Hence, the hybrid pair {F, g} satisfies the contractive
condition (1), for all x, y, z, w, p, q, r, s ∈ X. In addition, all the other condi-
tions of Theorem 2.1 are satisfied and z = (0, 0, 0, 0) is a common quadruple
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fixed point of hybrid pair {F, g}. The function F : X4 → CB(X) involved
in this example is not continuous on X4.

Corollary 2.1. Let (X, d) be a metric space. Assume F : X4 → CB(X)
and g : X → X be two mappings satisfying

H(F (x, y, z, w), F (p, q, r, s))

≤ ϕ
[
d(gx, gp) + d(gy, gq) + d(gz, gr) + d(gw, gs)

4

]
+ ψ [M(x, y, z, w, p, q, r, s)] ,

for all x, y, z, w, p, q, r, s ∈ X, where ϕ ∈ Φ and ψ ∈ Ψ. Furthermore assume
that F (X4) ⊆ g(X) and g(X) is a complete subset of X. Then F and g have
a quadruple coincidence point. Moreover, F and g have a common quadruple
fixed point, if one of the following conditions holds:

(a) F and g are w−compatible. lim
n→∞

gnx = p, lim
n→∞

gny = q, lim
n→∞

gnz =

r and lim
n→∞

gnw = s for some (x, y, z, w) ∈ C{F, g} and for some
p, q, r, s ∈ X and g is continuous at p, q, r and s.

(b) g is F−weakly commuting for some (x, y, z, w) ∈ C{F, g} and gx,
gy, gz and gw are fixed points of g, that is, g2x = gx, g2y = gy,
g2z = gz and g2w = gw.

(c) g is continuous at x, y, z and w. lim
n→∞

gnp = x, lim
n→∞

gnq = y,
lim
n→∞

gnr = z and lim
n→∞

gns = w for some (x, y, z, w) ∈ C{F, g} and
for some p, q, r, s ∈ X.

(d) g(C{F, g}) is a singleton subset of C{F, g}.

Proof. It suffices to remark that

d(gx, gp) + d(gy, gq) + d(gz, gr) + d(gw, gs)

4

≤ max {d(gx, gp), d(gy, gq), d(gz, gr), d(gw, gs)}
4

+
max {d(gx, gp), d(gy, gq), d(gz, gr), d(gw, gs)}

4

+
max {d(gx, gp), d(gy, gq), d(gz, gr), d(gw, gs)}

4

+
max {d(gx, gp), d(gy, gq), d(gz, gr), d(gw, gs)}

4
≤ max {d(gx, gp), d(gy, gq), d(gz, gr), d(gw, gs)} .

Then, we apply Theorem 2.1, since ϕ is non-decreasing. �

If we put g = I (the identity mapping) in the Theorem 2.1, we get the
following result:



86 A Common Fixed Point Theorem

Corollary 2.2. Let (X, d) be a complete metric space, F : X4 → CB(X)
be a mapping satisfying

H(F (x, y, z, w), F (p, q, r, s))

≤ ϕ [max {d(x, p), d(y, q), d(z, r), d(w, s)}]
+ ψ [m(x, y, z, w, p, q, r, s)] ,

for all x, y, z, w, p, q, r, s ∈ X, where ϕ ∈ Φ and ψ ∈ Ψ. Then F has a
quadruple fixed point.

If we put g = I (the identity mapping) in the Corollary 2.1, we get the
following result:

Corollary 2.3. Let (X, d) be a complete metric space, F : X4 → CB(X)
be a mapping satisfying

H(F (x, y, z, w), F (p, q, r, s))

≤ ϕ
[
d(x, p) + d(y, q) + d(z, r) + d(w, s)

4

]
+ ψ [m(x, y, z, w, p, q, r, s)] ,

for all x, y, z, w, p, q, r, s ∈ X, where ϕ ∈ Φ and ψ ∈ Ψ. Then F has a
quadruple fixed point.

If we put ψ(t) = 0 in Theorem 2.1, we get the following result:

Corollary 2.4. Let (X, d) be a metric space. Assume F : X4 → CB(X)
and g : X → X be two mappings satisfying

H(F (x, y, z, w), F (p, q, r, s)) ≤ ϕ
[
max

{
d(gx, gp), d(gy, gq),
d(gz, gr), d(gw, gs)

}]
,

for all x, y, z, w, p, q, r, s ∈ X, where ϕ ∈ Φ. Furthermore assume that
F (X4) ⊆ g(X) and g(X) is a complete subset of X. Then F and g have a
quadruple coincidence point. Moreover, F and g have a common quadruple
fixed point, if one of the following conditions holds:

(a) F and g are w−compatible. lim
n→∞

gnx = p, lim
n→∞

gny = q, lim
n→∞

gnz =

r and lim
n→∞

gnw = s for some (x, y, z, w) ∈ C{F, g} and for some
p, q, r, s ∈ X and g is continuous at p, q, r and s.

(b) g is F−weakly commuting for some (x, y, z, w) ∈ C{F, g} and gx,
gy, gz and gw are fixed points of g, that is, g2x = gx, g2y = gy,
g2z = gz and g2w = gw.

(c) g is continuous at x, y, z and w. lim
n→∞

gnp = x, lim
n→∞

gnq = y,
lim
n→∞

gnr = z and lim
n→∞

gns = w for some (x, y, z, w) ∈ C{F, g} and
for some p, q, r, s ∈ X.

(d) g(C{F, g}) is a singleton subset of C{F, g}.

If we put ψ(t) = 0 in Corollary 2.1, we get the following result:
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Corollary 2.5. Let (X, d) be a metric space. Assume F : X4 → CB(X)
and g : X → X be two mappings satisfying

H(F (x, y, z, w), F (p, q, r, s))

≤ ϕ
[
d(gx, gp) + d(gy, gq) + d(gz, gr) + d(gw, gs)

4

]
,

for all x, y, z, w, p, q, r, s ∈ X, where ϕ ∈ Φ. Furthermore assume that
F (X4) ⊆ g(X) and g(X) is a complete subset of X. Then F and g have a
quadruple coincidence point. Moreover, F and g have a common quadruple
fixed point, if one of the following conditions holds:

(a) F and g are w−compatible. lim
n→∞

gnx = p, lim
n→∞

gny = q, lim
n→∞

gnz =

r and lim
n→∞

gnw = s for some (x, y, z, w) ∈ C{F, g} and for some
p, q, r, s ∈ X and g is continuous at p, q, r and s.

(b) g is F−weakly commuting for some (x, y, z, w) ∈ C{F, g} and gx,
gy, gz and gw are fixed points of g, that is, g2x = gx, g2y = gy,
g2z = gz and g2w = gw.

(c) g is continuous at x, y, z and w. lim
n→∞

gnp = x, lim
n→∞

gnq = y,
lim
n→∞

gnr = z and lim
n→∞

gns = w for some (x, y, z, w) ∈ C{F, g} and
for some p, q, r, s ∈ X.

(d) g(C{F, g}) is a singleton subset of C{F, g}.

If we put g = I (the identity mapping) in the Corollary 2.4, we get the
following result:

Corollary 2.6. Let (X, d) be a complete metric space, F : X4 → CB(X)
be a mapping satisfying

H(F (x, y, z, w), F (p, q, r, s)) ≤ ϕ
[
max

{
d(x, p), d(y, q),
d(z, r), d(w, s)

}]
,

for all x, y, z, w, p, q, r, s ∈ X, where ϕ ∈ Φ. Then F has a quadruple fixed
point.

If we put g = I (the identity mapping) in the Corollary 2.5, we get the
following result:

Corollary 2.7. Let (X, d) be a complete metric space, F : X4 → CB(X)
be a mapping satisfying

H(F (x, y, z, w), F (p, q, r, s)) ≤ ϕ
[
d(x, p) + d(y, q) + d(z, r) + d(w, s)

4

]
,

for all x, y, z, w, p, q, r, s ∈ X, where ϕ ∈ Φ. Then F has a quadruple fixed
point.

If we put ϕ(t) = kt where 0 < k < 1 in Corollary 2.4, we get the following
result:



88 A Common Fixed Point Theorem

Corollary 2.8. Let (X, d) be a metric space. Assume F : X4 → CB(X)
and g : X → X be two mappings satisfying

H(F (x, y, z, w), F (p, q, r, s)) ≤ kmax

{
d(gx, gp), d(gy, gq),
d(gz, gr), d(gw, gs)

}
,

for all x, y, z, w, p, q, r, s ∈ X, where 0 < k < 1. Furthermore assume that
F (X4) ⊆ g(X) and g(X) is a complete subset of X. Then F and g have a
quadruple coincidence point. Moreover, F and g have a common quadruple
fixed point, if one of the following conditions holds:

(a) F and g are w−compatible. lim
n→∞

gnx = p, lim
n→∞

gny = q, lim
n→∞

gnz =

r and lim
n→∞

gnw = s for some (x, y, z, w) ∈ C{F, g} and for some
p, q, r, s ∈ X and g is continuous at p, q, r and s.

(b) g is F−weakly commuting for some (x, y, z, w) ∈ C{F, g} and gx,
gy, gz and gw are fixed points of g, that is, g2x = gx, g2y = gy,
g2z = gz and g2w = gw.

(c) g is continuous at x, y, z and w. lim
n→∞

gnp = x, lim
n→∞

gnq = y,
lim
n→∞

gnr = z and lim
n→∞

gns = w for some (x, y, z, w) ∈ C{F, g} and
for some p, q, r, s ∈ X.

(d) g(C{F, g}) is a singleton subset of C{F, g}.

If we put ϕ(t) = kt where 0 < k < 1 in Corollary 2.5, we get the following
result:

Corollary 2.9. Let (X, d) be a metric space. Assume F : X4 → CB(X)
and g : X → X be two mappings satisfying

H(F (x, y, z, w), F (p, q, r, s))

≤ k
[
d(gx, gp) + d(gy, gq) + d(gz, gr) + d(gw, gs)

4

]
,

for all x, y, z, w, p, q, r, s ∈ X, where 0 < k < 1. Furthermore assume that
F (X4) ⊆ g(X) and g(X) is a complete subset of X. Then F and g have a
quadruple coincidence point. Moreover, F and g have a common quadruple
fixed point, if one of the following conditions holds:

(a) F and g are w−compatible. lim
n→∞

gnx = p, lim
n→∞

gny = q, lim
n→∞

gnz =

r and lim
n→∞

gnw = s for some (x, y, z, w) ∈ C{F, g} and for some p,
q, r, s ∈ X and g is continuous at p, q, r and s.

(b) g is F−weakly commuting for some (x, y, z, w) ∈ C{F, g} and gx,
gy, gz and gw are fixed points of g, that is, g2x = gx, g2y = gy,
g2z = gz and g2w = gw.

(c) g is continuous at x, y, z and w. lim
n→∞

gnp = x, lim
n→∞

gnq = y,
lim
n→∞

gnr = z and lim
n→∞

gns = w for some (x, y, z, w) ∈ C{F, g} and
for some p, q, r, s ∈ X.
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(d) g(C{F, g}) is a singleton subset of C{F, g}.

If we put g = I (the identity mapping) in the Corollary 2.8, we get the
following result:

Corollary 2.10. Let (X, d) be a complete metric space, F : X4 → CB(X)
be a mapping satisfying

H(F (x, y, z, w), F (p, q, r, s)) ≤ kmax {d(x, p), d(y, q), d(z, r), d(w, s)} ,
for all x, y, z, w, p, q, r, s ∈ X, where 0 < k < 1. Then F has a quadruple
fixed point.

If we put g = I (the identity mapping) in the Corollary 2.9, we get the
following result:

Corollary 2.11. Let (X, d) be a complete metric space, F : X4 → CB(X)
be a mapping satisfying

H(F (x, y, z, w), F (p, q, r, s)) ≤ k
[
d(x, p) + d(y, q) + d(z, r) + d(w, s)

4

]
,

for all x, y, z, w, p, q, r, s ∈ X, where 0 < k < 1. Then F has a quadruple
fixed point.
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