p^*-Closure Operator and p^*-Regularity in Fuzzy Setting

ANJANA BHATTACHARYYA**

Abstract. In this paper a new type of fuzzy regularity, viz. fuzzy p^*-regularity has been introduced and studied by a newly defined closure operator, viz., fuzzy p^*-closure operator. Also we have found the mutual relationship of this closure operator among other closure operators defined earlier. In p^*-regular space, p^*-closure operator is an idempotent operator. In the last section, p^*-closure operator has been characterized via p^*-convergence of a fuzzy net.

1. Introduction

Throughout the paper, by (X, τ) or simply by X we mean a fuzzy topological space (fts, for short) in the sense of Chang [3]. A fuzzy set [7] A is a mapping from a nonempty set X into a closed interval $I = [0,1]$. The support [6] of a fuzzy set A in X will be denoted by $\text{supp}A = \{x \in X : A(x) \neq 0\}$. A fuzzy point [6] with the singleton support $x \in X$ and the value t $(0 < t \leq 1)$ at x will be denoted by x_t. 0_X and 1_X are the constant fuzzy sets taking values 0 and 1 in X respectively. The complement [7] of a fuzzy set A in X will be denoted by $1_X \setminus A$ and is defined by $(1_X \setminus A)(x) = 1 - A(x)$, for all $x \in X$. For two fuzzy sets A and B in X, we write $A \leq B$ if and only if $A(x) \leq B(x)$, for each $x \in X$, and AqB means A is quasi-coincident (q-coincident, for short) with B [6] if $A(x) + B(x) > 1$, for some $x \in X$. The negation of these two statements will be denoted by $A \not\leq B$ and $A \not\q B$ respectively. clA and intA of a fuzzy set A in X respectively stand for the fuzzy closure [3] and fuzzy interior [3] of A in X. A fuzzy set A in X is called fuzzy α-open [2] if $A \leq \text{intcl} \text{int}A$. The complement of a fuzzy α-open set is called a fuzzy α-closed [2] set. The smallest fuzzy α-closed set containing a fuzzy set A is called fuzzy α-closure

2000 Mathematics Subject Classification. Primary: 54A40; Secondary: 54D99.

Key words and phrases. Fuzzy p^*-closure operator, fuzzy p^*-closed set, fuzzy p^*-regular space, p^*-convergence of a fuzzy net.

**The author acknowledges the financial support from UGC (Minor Research Project), New Delhi.
of A and is denoted by αclA [2], i.e.,

$$\alpha clA = \bigwedge \{ U : A \leq U \text{ and } U \text{ is fuzzy } \alpha \text{-closed} \}$$

A fuzzy set A in X is fuzzy α-closed if $A = \alpha clA$ [2]. A fuzzy set B is called a quasi neighbourhood (q-nbd, for short) of a fuzzy set A in an fts X if there is a fuzzy open set U in X such that $A q U \leq B$. If, in addition, B is fuzzy open (resp., α-open) then B is called a fuzzy open (resp., α-open) q-nbd of A. In particular, a fuzzy set B in X is a fuzzy open (resp., α-open) q-nbd of a fuzzy point x_t in X if $x_t q U \leq B$, for some fuzzy open (resp., α-open) set U in X.

2. Fuzzy p^\ast-Closure Operator: Some Properties

In this section fuzzy p^\ast-closure operator has been introduced and studied. Let us recall a definition from [4] for ready reference.

Definition 2.1 ([4]). A fuzzy set A in an fts (X, τ) is called fuzzy preopen if $A \leq \text{int cl}A$. The complement of a fuzzy preopen set is called a fuzzy preclosed set.

The union of all fuzzy preopen sets contained in a fuzzy set A is called fuzzy preinterior of A, to be denoted by $pintA$.

The intersection of all fuzzy preclosed sets containing a fuzzy set A is called fuzzy preclosure of A, to be denoted by $pclA$.

Definition 2.2. A fuzzy preopen set A in an fts (X, τ) is called a fuzzy pre-q-nbd of a fuzzy point x_t, if $x_t q A$.

Lemma 2.1. For a fuzzy point x_t and a fuzzy set A in an fts (X, τ), $x_t \in pclA$ if and only if every fuzzy pre-q-nbd U of x_t, $U q A$.

Proof. Let $x_t \in pclA$ and U be any fuzzy pre-q-nbd of x_t. Then $U(x) + t > 1 \Rightarrow t > 1 - U(x) \Rightarrow x_t \notin 1_X \setminus U$ which is fuzzy preclosed in X and hence by Definition 2.1, $A \nsubseteq 1_X \setminus U \Rightarrow$ there exists $y \in X$ such that $A(y) > (1_X \setminus U)(y) \Rightarrow A(y) + U(y) > 1 \Rightarrow A q U$.

Conversely, let for any fuzzy pre-q-nbd U of x_t, $U q A$. Let V be any fuzzy preclosed set containing A, i.e., $A \leq V$... (1). We have to show that $x_t \in V$. If possible, let $x_t \notin V$. Then $V(x) < t \Rightarrow 1 - V(x) > 1 - t \Rightarrow x_t q (1_X \setminus V)$. By assumption $(1_X \setminus V) q A \Rightarrow A > V$, contradicts (1). \hfill \square

Lemma 2.2. For any two fuzzy preopen sets A and B in an fts X, $A \nsubseteq B \Rightarrow pclA \nsubseteq B$ and $A \nsubseteq pclB$.

Proof. If possible, let $pclA q B$. Then there exists $x \in X$ such that $pclA(x) + B(x) > 1$. Let $pclA(x) = t$. Then $B(x) + t > 1 \Rightarrow x_t q B$ and $x_t \in pclA$. By Lemma 2.1, $B q A$, a contradiction.

Similarly, we can prove that $A \nsubseteq pclB$. \hfill \square
Definition 2.3. A fuzzy point x_t in an fts X is called fuzzy p^*-cluster point of a fuzzy set A in X if $pclUqA$ for every fuzzy pre-q-nbd U of x_t.

Note 2.1. It is clear from Definition 2.1 and Definition 2.3 that $pclA \leq [A]_p$, for any fuzzy set A in an fts X. The converse is not true, in general, as seen from the following example.

Example 2.1. Let $X = \{a, b\}$, $\tau = \{0_X, 1_X, B\}$ where $B(a) = 0.7$, $B(b) = 0.5$. Then (X, τ) is an fts. The collection of all fuzzy preopen sets in (X, τ) is of the form $\{0_X, 1_X, B, U\}$ where $U \not\subseteq 1_X \setminus B$ and that of fuzzy preclosed sets is $\{0_X, 1_X, 1_X \setminus B, 1_X \setminus U\}$ where $1_X \setminus U \not\supseteq B$. Consider the fuzzy point $a_{0.2}$ and the fuzzy set V defined by $V(a) = V(b) = 0.1$. Then $a_{0.2} \notin pclV$ but $a_{0.2} \in [V]_p$. Indeed, $C(a) = 0.81, C(b) = 0.5$ is a fuzzy pre-q-nbd of $a_{0.2}$ but $C \not\mathcal{V}$. Although $pclC = 1_XqV$.

The following theorem shows that under which condition, the two closure operators pcl and p^* coincide.

Theorem 2.1. For a fuzzy preopen set A in an fts (X, τ), $[A]_p = pclA$.

Proof. By Note 2.1, it suffices to show that $[A]_p \leq pclA$, for any fuzzy preopen set A in X.

Let x_t be a fuzzy point in X such that $x_t \notin pclA$. Then there exists a fuzzy pre-q-nbd V of x_t such that $V \not\mathcal{V}A$. Then $V(y) + A(y) \leq 1$, for all $y \in X \Rightarrow V(y) \leq 1 - A(y)$, for all $y \in X \Rightarrow pclV \leq pcl(1_X \setminus A) = 1_X \setminus A$ (since $1_X \setminus A$ is fuzzy preclosed in X). Thus $pclV \not\mathcal{V}A$ and consequently, $x_t \notin [A]_p$. Hence $[A]_p \leq pclA$ for a fuzzy preopen set A in X. □

We now characterize fuzzy p^*-closure operator of a fuzzy set A in an fts X.

Theorem 2.2. For any fuzzy set A in an fts (X, τ), $[A]_p = \cap\{[U]_p: U \text{ is fuzzy preopen in } X \text{ and } A \subseteq U\}$.

Proof. Clearly, L.H.S. \leq R.H.S.

If possible, let $x_t \in$ R.H.S. but $x_t \notin$ L.H.S. Then there exists a fuzzy pre-q-nbd V of x_t such that $pclV \not\mathcal{V}A$ and so $A \leq 1_X \setminus pclV$ and $1_X \setminus pclV$ being fuzzy preopen set in X containing A, by our assumption, $x_t \in [1_X \setminus pclV]_p$. But $pclV \not\mathcal{V}(1_X \setminus pclV)$ and so $x_t \notin [1_X \setminus pclV]_p$, a contradiction. This completes the proof. □

Remark 2.1. By Theorem 2.1 and Theorem 2.2, we can conclude that $[A]_p$ is fuzzy preclosed in X for a fuzzy set A in X.

Theorem 2.3. In an fts (X, τ), the following hold:
(a) the fuzzy sets 0_X and 1_X are fuzzy p^*-closed sets in X,
(b) for two fuzzy sets A and B in X, if $A \leq B$, then $[A]_p \leq [B]_p$,
(c) the intersection of any two fuzzy p^*-closed sets in X is fuzzy p^*-closed in X.

Proof. (a) and (b) are obvious.
(c) Let A and B be any two fuzzy p^*-closed sets in X. Then $A = [A]_p$ and $B = [B]_p$. Now $A \wedge B \leq A$, $A \wedge B \leq B$. Then by (b), $[A \wedge B]_p \leq [A]_p$ and $[A \wedge B]_p \leq [B]_p$. Therefore, $[A \wedge B]_p \leq [A]_p \wedge [B]_p = A \wedge B$.

Conversely, let $x_t \in A \wedge B$. Then $x_t \in [A]_p$ and $x_t \in [B]_p$. Then $A(x) \geq t, B(x) \geq t$, i.e., $(A \wedge B)(x) = \min\{A(x), B(x)\} \geq t$. Now for any fuzzy pre-q-nbd V of x_t, $pclVqA, pclVqB$. Then $V(x) + t > 1$. Therefore, $pclV(x) + (A \wedge B)(x) > 1 - t + t = 1$. Therefore, $pclVq(A \wedge B)$ for any fuzzy pre-q-nbd V of x_t and hence $x_t \in [A \wedge B]_p$. Consequently, $[A]_p \wedge [B]_p \leq [A \wedge B]_p$. □

Remark 2.2. In fact, the intersection of any collection of fuzzy p^*-closed sets is fuzzy p^*-closed. But the union of two fuzzy p^*-closed sets may not be fuzzy p^*-closed is clear from the following example.

Example 2.2. Let $X = \{a, b\}$, $\tau = \{0_X, 1_X, A\}$ where $A(a) = 0.4, A(b) = 0.7$. Then (X, τ) is an fts. The collection of all fuzzy preopen sets in (X, τ) is $\{0_X, 1_X, A, U\}$ where $U \not\leq 1_X \wedge A$. Then the collection of all fuzzy preclosed sets is $\{0_X, 1_X, 1_X \wedge A, 1_X \wedge U\}$ where $1_X \wedge U \not\geq A$. Let C and D be two fuzzy sets given by $C(a) = 0.5, C(b) = 0.6, D(a) = 0.2, D(b) = 0.7$. Then $(C \vee D)(a) = 0.5, (C \vee D)(b) = 0.7$. Now $a_{0.6} \notin [C]_p$ as $a_{0.6}qU$ where $U(a) = 0.41, U(b) = 0.31$, but $pclU = U \not\bigvee C$. Again $a_{0.6} \notin [D]_p$ as $a_{0.6}qV$ where $V(a) = 0.7, V(b) = 0.2$, but $pclV = V \not\bigvee D$.

But for any fuzzy pre-q-nbd of $a_{0.6}$ is of the form U where $U \not\leq 1_X \wedge A$. Then $pclU = Uq(C \vee D)$ and consequently, $a_{0.6} \in [C \vee D]_p$. Therefore, $[C]_p \vee [D]_p = [C \vee D]_p$. Also $(C \vee D)(a) = 0.5 \not\geq 0.6$ and so $a_{0.6} \notin C \vee D$.

Note 2.2. It is clear from Remark 2.2 that fuzzy p^*-open sets in an fts (X, τ) may not form a base for a fuzzy topology.

Result 2.1. We conclude that $x_t \in [y_t]_p$ does not imply $y_{t'} \in [x_t]_p$ where $x_t, y_{t'}$ (0 < t, t' < 1) are fuzzy points in X as shown from the following example.

Example 2.3. Let $X = \{a, b\}$, $\tau = \{0_X, 1_X, A, B\}$ where $A(a) = 0.5, A(b) = 0, B(a) = 0.7, B(b) = 0$. Then (X, τ) is an fts. The collection of all fuzzy preopen sets in X is $\{0_X, 1_X, A, B, U, V\}$ where $0.3 < U(a) \leq 0.5, U(b) = 0$ and $V(a) = 0.5, 0 \leq V(b) \leq 1$. Then the collection of all fuzzy preclosed sets is $\{0_X, 1_X, 1_X \wedge A, 1_X \wedge B, 1_X \wedge U, 1_X \wedge V\}$ where $0.5 \leq 1 - U(a) < 0.7, U(b) = 1$ and $0 \leq 1 - V(a) < 0.5, 0 \leq 1 - V(b) \leq 1$. Consider the fuzzy points $a_{0.6}$ and $b_{0.1}$. We claim that $b_{0.1} \in [a_{0.6}]_p$, but $a_{0.6} \notin [b_{0.1}]_p$. Indeed, any fuzzy pre-q-nbd of $b_{0.1}$ is of the form V where $V(a) > 0.5, V(b) > 0.9$ and $pclV = W$.
where \(W(a) > 0.5, W(b) = 1 \) and \(Wqa_{0.6} \). But \(D(a) = 0.41, D(b) = 0 \) is a fuzzy pre-q-nbd of \(a_{0.6} \) and \(pclD = D \not\subset b_{0.1} \).

3. \(p^* \)-Closure Operator: Mutual Relationship with Other Closure Operators

In this section we have established some mutual relationship of \(p^* \)-closure operator with other closure operators, viz., \(\alpha^* \)-closure operator, \(\theta \)-closure operator.

First We recall some definitions for ready references.

Definition 3.1 ([5]). Let \(A \) be a fuzzy set and \(x_t \), a fuzzy point in an fts \(X \). \(x_t \) is called a fuzzy \(\theta \)-cluster point of \(A \) if every closure of every fuzzy open q-nbd of \(x_t \) is \(q \)-coincident with \(A \).

The union of all fuzzy \(\theta \)-cluster points of \(A \) is called fuzzy \(\theta \)-closure of \(A \), to be denoted by \([A]_\theta \). \(A \) is called fuzzy \(\theta \)-closed if \(A = [A]_\theta \) and the complement of a fuzzy \(\theta \)-closed set is called fuzzy \(\theta \)-open.

Definition 3.2 ([1]). A fuzzy point \(x_t \) in an fts \(X \) is called a fuzzy \(\alpha^* \)-cluster point of a fuzzy set \(A \) in \(X \) if \(aclUqA \) for every fuzzy \(\alpha \)-open q-nbd \(U \) of \(x_t \).

The union of all fuzzy \(\alpha^* \)-cluster points of \(A \) is called fuzzy \(\alpha^* \)-closure of \(A \), to be denoted by \([A]_{\alpha^*} \). A fuzzy set \(A \) is called fuzzy \(\alpha^* \)-closed if \(A = [A]_{\alpha^*} \) and the complement of fuzzy \(\alpha^* \)-closed set is called fuzzy \(\alpha^* \)-open.

Result 3.1. \([A]_p \leq [A]_\theta \), for any fuzzy set \(A \) in an fts \(X \).

Proof. Let \(x_t \in [A]_p \). Let \(V \) be any fuzzy open q-nbd of \(x_t \). Then \(V \) is fuzzy pre-q-nbd of \(x_t \) also. As \(x_t \in [A]_p \), \(pclVqA \Rightarrow clVqA \Rightarrow x_t \in [A]_\theta \). \(\square \)

Remark 3.1. It is clear from the following example that \([A]_p \neq [A]_\theta \), for any fuzzy set \(A \) in an fts \(X \), in general.

Example 3.1. Consider Example 2.1. Consider the fuzzy point \(a_{0.51} \) and a fuzzy set \(C \) given by \(C(a) = C(b) = 0.1 \). Then \(U(a) = 0.5, U(b) = 0 \) being a fuzzy pre-q-nbd of \(a_{0.51} \), \(pclU = U \not\subset C \) and so \(a_{0.51} \notin [C]_p \). But other than \(1_X \), \(B \) is the only fuzzy open q-nbd of \(a_{0.51} \) and \(clB = 1_X qC \). Therefore, \(a_{0.51} \in [C]_\theta \).

Result 3.2. \([A]_p \leq [A]_{\alpha^*} \), for any fuzzy set \(A \) in an fts \(X \).

Proof. Let \(x_t \in [A]_p \). Let \(U \) be a fuzzy \(\alpha \)-open q-nbd of \(x_t \). Then \(U \) is a fuzzy preopen set and hence \(pclUqA \Rightarrow aclUqA \Rightarrow x_t \in [A]_{\alpha^*} \). \(\square \)

Remark 3.2. It is clear from the following example that \([A]_p \neq [A]_{\alpha^*} \), for any fuzzy set \(A \) in an fts \(X \), in general.

Example 3.2. Let \(X = \{a, b\}, \tau = \{0_X, 1_X, A, B\} \) where \(A(a) = 0.5, A(b) = 0.4, B(a) = 0.7, B(b) = 0.5 \). Then \((X, \tau) \) is an fts. The collection of all fuzzy \(\alpha \)-open sets is \(\{0_X, 1_X, A, B, V\} \) where \(V \geq B \) and that of fuzzy preopen sets is \(\{0_X, 1_X, A, B, U, V_1, W\} \) where \(U \leq A, U \leq 1_X \setminus B, V_1 > 1_X \setminus A, W \geq B \).
Consider the fuzzy point $b_{0.71}$ and the fuzzy set D, defined by $D(a) = D(b) = 0.6$. Then $U_1(a) = 0.4, U_1(b) = 0.3$ is a fuzzy preopen set such that $b_{0.71} \notin U_1$. But $pclU_1 = U_1 \not\equiv D$ and so $b_{0.71} \notin [D]_p$. All fuzzy α-open q-nbds of $b_{0.71}$ are $1_X, A, B, V$ where $V \geq B$. $\alphacl A = (1_X \setminus A)qD, \alphacl B = \alphacl V = \alphacl 1_X = 1_XqD$ and so $b_{0.71} \notin [D]_p$.

Remark 3.3. The following two examples show that fuzzy p^*-closure operator and fuzzy closure operator are independent notions.

Example 3.3. Let $X = \{a, b\}, \tau = \{0_X, 1_X, B\}$ where $B(a) = 0.7, B(b) = 0.5$. Then (X, τ) is an fts. Consider the fuzzy point $a_{0.51}$ and the fuzzy set C given by $C(a) = C(b) = 0.4$. Then $a_{0.51} \notin [C]_p$ as U defined by $U(a) = 0.5, U(b) = 0$, being a fuzzy pre-q-nbd of $a_{0.51}, pclU = U \not\equiv qC$. But other than $1_X, B$ is the only fuzzy open q-nbd of $a_{0.51}$ such that BqC. Consequently, $a_{0.51} \notin ClC$.

Example 3.4. Let $X = \{a\}, \tau = \{0_X, 1_X, A, B\}$ where $A(a) = 0.4, B(a) = 0.7$. Then (X, τ) is an fts. Then the collection of all fuzzy preopen sets is $\{0_X, 1_X, U, V\}$ where $U \leq A, V \geq B$. Consider the fuzzy point $a_{0.4}$ and the fuzzy set C given by $C(a) = 0.3$. Then B is a fuzzy open q-nbd of $a_{0.4}$, but $B \not\equiv qC$ and so $a_{0.4} \notin clC$. But any fuzzy pre-q-nbd of $a_{0.4}$ is of the form V and $pclV = 1_XqC$ and so $a_{0.4} \in [C]_p$.

4. **Fuzzy p^*-Regular Space: Some Characterizations**

In this section a new type of fuzzy regularity has been introduced and studied and shown that in this space p^*-closure operator and pcl operator coincide.

Definition 4.1. An fts (X, τ) is said to be fuzzy p^*-regular if for each fuzzy point x_t and each fuzzy pre-q-nbd U of x_t, there exists a fuzzy preopen set V in X such that $x_tqV \leq pclV \leq U$.

Theorem 4.1. For an fts (X, τ), the following conditions are equivalent:

(a) X is fuzzy p^*-regular space.
(b) For any fuzzy set A in X, $[A]_p = pclA$.
(c) For each fuzzy point x_t and each fuzzy preclosed set F with $x_t \notin F$, there exists a fuzzy preopen set U such that $x_t \notin pclU$ and $F \leq U$.
(d) For each fuzzy point x_t and each fuzzy preclosed set F such that $x_t \notin F$, there exist fuzzy preopen sets U and V in X such that $x_tqU, F \leq V$ and $U \not\equiv V$.
(e) For any fuzzy set A and any fuzzy preclosed set F with $A \not\subseteq F$, there exist fuzzy preopen sets U and V such that $AqU, F \leq V$ and $U \not\equiv qV$.
(f) For any fuzzy set A and any fuzzy preopen set U with AqU, there exists a fuzzy preopen set V such that $AqV \leq pclV \leq U$.

Proof. (a) ⇒ (b): By Note 2.1, it suffices to show that $[A]_p \leq pclA$, for any fuzzy set A in X.
Let \(x_t \in [A]_p \) and \(V \) be any fuzzy pre-q-nbd of \(x_t \). By (a), there exists a fuzzy preopen set \(W \) such that \(x_t q W \leq pcl W \leq V \). Since \(x_t \in [A]_p \), \(pcl W q A \) and so \(V q A \). Consequently, \(x_t \in pcl A \Rightarrow [A]_p \leq pcl A \).

(b) \(\Rightarrow \) (a): Let \(x_t \) be a fuzzy point in \(X \) and \(U \) be any fuzzy pre-q-nbd of \(x_t \). Then \(U(x) + t > 1 \Rightarrow x_t \notin (1_X \setminus U) = pcl (1_X \setminus U) = [1_X \setminus U]_p \) (by (b)). Then there exists a fuzzy pre-q-nbd \(V \) of \(x_t \) such that \(pcl V \not\emptyset (1_X \setminus U) \Rightarrow pcl V \leq U \). Then \(x_t q V \leq pcl V \leq U \Rightarrow X \) is fuzzy \(p^* \)-regular.

(a) \(\Rightarrow \) (c): Let \(x_t \) be a fuzzy point in \(X \) and \(F \), a fuzzy preclosed set in \(X \) with \(x_t \notin F \). Then \(F(x) < t \Rightarrow 1 - F(x) + t > 1 \Rightarrow x_t q (1_X \setminus F) \). By (a), there exists a fuzzy preopen set \(W \) such that \(x_t q W \leq pcl W \leq 1_X \setminus F \). Therefore, \(F \leq 1_X \setminus pcl W = U \) (say) which is fuzzy preopen. Now \(x_t q W \Rightarrow x_t q pint W \leq W \leq pint (pcl W) \Rightarrow x_t q pint (pcl W) \Rightarrow (pint (pcl W))(x) + t > 1 \Rightarrow 1 - (pint (pcl W))(x) < t \Rightarrow x_t \notin 1_X \setminus (pint (pcl W)) \Rightarrow x_t \notin pcl (1_X \setminus pcl W) \Rightarrow x_t \notin pcl U \).

(c) \(\Rightarrow \) (d): Let \(x_t \) be a fuzzy point in \(X \) and \(F \), a fuzzy preclosed set in \(X \) with \(x_t \notin F \). By (c), there exists a fuzzy preopen set \(U \) such that \(x_t \notin pcl U \) and \(F \leq U \). Now \(x_t \notin pcl U \Rightarrow \) there exists a fuzzy pre-q-nbd \(W \) of \(x_t \) such that \(W \not\emptyset \).

(d) \(\Rightarrow \) (e): Let \(A \) be any fuzzy set and \(F \), any fuzzy preclosed set in \(X \) with \(A \leq F \). Then there exists \(x \in X \) such that \(A(x) > F(x) \). Let \(A(x) = t \). Then \(x_t \notin F \). By (d), there exist fuzzy preopen sets \(U \) and \(V \) such that \(x_t q U, F \leq V \) and \(U \not\emptyset \). Again, \(U(x) + A(x) = U(x) + t > 1 \Rightarrow Aq U \).

(e) \(\Rightarrow \) (f): Let \(A \) be any fuzzy set and \(U \), any fuzzy preopen set in \(X \) with \(Aq U \). Then \(A \leq 1_X \setminus U \) which is fuzzy preclosed. By (e), there exist fuzzy preopen sets \(V \) and \(W \) such that \(Aq V, 1_X \setminus U \leq W \) and \(V \not\emptyset \). Then by Lemma 2.2, \(pcl V \not\emptyset \). Thus \(Aq V \leq pcl V \leq 1_X \setminus W \leq U \).

(f) \(\Rightarrow \) (a): Obvious. \(\square \)

Corollary 4.1. An fts \((X, \tau) \) is fuzzy \(p^* \)-regular if and only if every fuzzy preclosed set in \(X \) is fuzzy \(p^* \)-closed in \(X \).

Proof. Let \((X, \tau)\) be fuzzy \(p^* \)-regular space and \(A \), a fuzzy preclosed set in \(X \). Then by Theorem 4.1 (a) \(\Rightarrow \) (b), \(A = pcl A = [A]_p \) and hence \(A \) is fuzzy \(p^* \)-closed in \(X \).

Conversely, let \(A = [A]_p \) for any fuzzy preclosed set in \(X \). Let \(B \) be any fuzzy set in \(X \). Then \(pcl B = [pcl B]_p \). Then \([B]_p \leq [pcl B]_p = pcl B \). Again from Note 2.1, \(pcl B \leq [B]_p \) and so \([B]_p = pcl B \) for any fuzzy set \(B \) in \(X \). Hence by Theorem 4.1 (b) \(\Rightarrow \) (a), \(X \) is fuzzy \(p^* \)-regular space. \(\square \)

Remark 4.1. In a fuzzy \(p^* \)-regular space \((X, \tau) \), \([A]_p \) is fuzzy \(p^* \)-regular space.

Proof. By Theorem 4.1 (a) \(\Rightarrow \) (b), \([A]_p = [pcl A]_p = pcl (pcl A) = pcl A = [A]_p \) (by Theorem 4.1 (a) \(\Rightarrow \) (b)). \(\square \)
5. CHARACTERIZATIONS OF FUZZY p^*-CLOSURE OPERATOR VIA FUZZY NET

In this section fuzzy p^*-closure operator of a fuzzy set is characterized in terms of fuzzy p^*-cluster point of a fuzzy net and its fuzzy p^*-convergence.

Definition 5.1. A fuzzy point x_t in an fts (X, τ) is called a fuzzy p^*-cluster point of a fuzzy net $\{S_n : n \in (D, \geq)\}$ if for every fuzzy pre-q-nbd U of x_t and for any $n \in D$, there exists $m \in D$ with $m \geq n$ such that $S_m qpclU$.

Definition 5.2. A fuzzy net $\{S_n : n \in (D, \geq)\}$ in an fts (X, τ) is said to p^*-converge to a fuzzy point x_t if for any fuzzy pre-q-nbd U of x_t, there exists $m \in D$ such that $S_n qpclU$ for all $n \geq m$ ($n \in D$). This is denoted by $\xrightarrow{S_n p^*} x_t$.

Theorem 5.1. A fuzzy point x_t is a fuzzy p^*-cluster point of a fuzzy net $\{S_n : n \in (D, \geq)\}$ in an fts (X, τ) if and only if there exists a fuzzy subnet of $\{S_n : n \in (D, \geq)\}$ which p^*-converges to x_t.

Proof. Let x_t be a fuzzy p^*-cluster point of the fuzzy net $\{S_n : n \in (D, \geq)\}$. Let $p(Q_{x_t})$ denote the set of fuzzy preclosures of all fuzzy pre-q-nbds of x_t. Then for any $A \in p(Q_{x_t})$, there exists $n \in D$ such that $S_n qA$. Let E denote the set of all ordered pairs (n, A) such that $n \in D$, $A \in p(Q_{x_t})$ and $S_n qA$. Then (E, \gg) is a directed set, where $(m, A) \gg (n, B)$ if and only if $m \geq n$ and $A \leq B$. Then $T : (E, \gg) \rightarrow (X, \tau)$ given by $T(m, A) = S_m$ is clearly a fuzzy subnet of $\{S_n : n \in (D, \geq)\}$.

We claim that $\xrightarrow{T p^*} x_t$. Let V be any fuzzy pre-q-nbd of x_t. Then there exists $n \in D$ such that $(n, pclV) \in E$ and so $S_n qpclV$. Now for any $(m, A) \gg (n, pclV)$, $T(m, A) = S_m qA \leq pclV \Rightarrow T(m, A) qpclV$. Consequently, $\xrightarrow{T p^*} x_t$.

Conversely, if x_t is not a fuzzy p^*-cluster point of the fuzzy net $\{S_n : n \in (D, \geq)\}$, then there exists a fuzzy pre-q-nbd U of x_t and an $n \in D$ such that $S_m \not\in qpclU$, for all $m \geq n$. Then clearly, no fuzzy subnet of the net $\{S_n : n \in (D, \geq)\}$ can p^*-converge to x_t.

Theorem 5.2. Let A be a fuzzy set in an fts (X, τ). A fuzzy point $x_t \in [A]_p$ if and only if there exists a fuzzy net $\{S_n : n \in (D, \geq)\}$ in A, which p^*-converges to x_t.

Proof. Let $x_t \in [A]_p$. Then for any fuzzy pre-q-nbd U of x_t, pclUqA, i.e., there exists $y^U \in suppA$ and a real number p_U with $0 < p_U \leq A(y^U)$ such that the fuzzy point y^U_{pq} with support y^U and value p_U belong to A and $y^U_{pq} qpclU$. We choose and fix one such y^U_{pq}, for each U. Let D denote the set of all fuzzy pre-q-nbds of x_t. Then (D, \geq) is a directed set under inclusion relation, i.e., $B, C \in D$, $B \geq C$ iff $B \leq C$. Then $\{y^U_{pq} : U \in D\}$ is a fuzzy net in A such that it p^*-converges to x_t. Indeed, for any fuzzy pre-q-nbd U of x_t, if $V \in D$ and $V \geq U$ (i.e., $V \leq U$), then $y^V_{pq} qpclV \leq pclU \Rightarrow y^V_{pq} qpclU$.

\[p^* - Closure Operator and p^* - Regularity in Fuzzy Setting \]
Conversely, let \(\{ S_n : n \in (D, \geq) \} \) be a fuzzy net in \(A \) such that \(S_n \overset{p}{\rightarrow} x_t \). Then for any fuzzy pre-q-nbd \(U \) of \(x_t \), there exists \(m \in D \) such that \(n \geq m \Rightarrow S_nqpclU \Rightarrow AqpclU \) (since \(S_n \in A \)). Hence \(x_t \in [A]_p \).

\[\square \]

Remark 5.1. It is clear that an improved version of the converse of the last theorem can be written as “\(x_t \in [A]_p \) if there exists a fuzzy net in \(A \) with \(x_t \) as a fuzzy \(p^* \)-cluster point”.

References

Anjana Bhattacharyya

Department of Mathematics

Victoria Institution (College)

78 B, A.P.C. Road

Kolkata - 700009

India

E-mail address: anjanabhattacharyya@hotmail.com