A generalization of modules with the property \((P^*)\)

BURCU NIŞANCI TÜRKMEN

Abstract. I.A. Khazzi and P.F. Smith called a module \(M\) have the property \((P^*)\) if every submodule \(N\) of \(M\) there exists a direct summand \(K\) of \(M\) such that \(K \leq N\) and \(N^K \subseteq \text{Rad}(M/R)\). Motivated by this, it is natural to introduce another notion that we called modules that have the properties \((GP^*)\) and \((N - GP^*)\) as proper generalizations of modules that have the property \((P^*)\). In this paper we obtain various properties of modules that have properties \((GP^*)\) and \((N - GP^*)\). We show that the class of modules for which every direct summand is a fully invariant submodule that have the property \((GP^*)\) is closed under finite direct sums. We completely determine the structure of these modules over generalized f-semiperfect rings.

1. Introduction

Throughout this paper, all rings are associative with identity element and all modules are unital right \(R\)-modules. Let \(R\) be a ring and let \(M\) be an \(R\)-module. The notation \(N \leq M\) means that \(N\) is a submodule of \(M\). A module \(M\) is called extending if every submodule of \(M\) is essential in a direct summand of \(M\) [4]. Here a submodule \(L \leq M\) is said to be essential in \(M\), denoted as \(L \subseteq M\), if \(L \cap N \neq 0\) for every nonzero submodule \(N \leq M\). Dually, a submodule \(S\) of \(M\) is called small \((in M)\)), denoted as \(S << M\), if \(M = S + L\) for every proper submodule \(L\) of \(M\). By \(\text{Rad}(M)\), we denote the intersection of all maximal submodules of \(M\). An \(R\)-module \(M\) is called supplemented if every submodule \(N\) of \(M\) has a supplement, that is a submodule \(K\) minimal with respect to \(M = N + K\). Equivalently, \(M = N + K\) and \(N \cap K << K\) [11]. \(M\) is called \((f-)\) supplemented if every (finitely generated) submodule of \(M\) has a supplement in \(M\) (see [11]). On the other hand, \(M\) is called amply supplemented if, for any submodules \(N\) and \(K\) of \(M\) with \(M = N + K\), \(K\) contains a supplement of \(N\) in \(M\). Accordingly a module \(M\) is called amply \(f\)-supplemented if every finitely generated submodule of \(M\) satisfies same condition. It is clear that (amply) \(f\)-supplemented modules are a proper generalization of (amply) supplemented modules.

2010 Mathematics Subject Classification. 16D10, 16N80.

Key words and phrases. Generalized f-semiperfect ring, the properties \((P^*)\), \((GP^*)\) and \((N-GP^*)\).
A module M is called lifting if for every submodule N of M there exists a direct summand K of M such that $K \leq N$ and $\frac{N}{K} \ll \frac{M}{K}$ (i.e. K is a coessential submodule of N in M) as a dual notion of extending modules. Mohamed and Müller has generalized the concept of lifting modules to \oplus-supplemented modules. M is called \oplus-supplemented if every submodule of M has a supplement that is a direct summand of M [6].

Let M be an R-module and let N and K be any submodules of M. If $M = N + K$ and $N \cap K \subseteq \text{Rad}(K)$, then K is called a Rad-supplement of N in M [12](according to [10], generalized supplement). It is clear that every supplement is Rad-supplement. M is called Rad-supplemented (according to [10], generalized supplemented) if every submodule of M has a Rad-supplement in M, and M is called amply Rad-supplemented if, for any submodules N and K of M with $M = N + K$, K contains a Rad-supplement of N in M. An R-module M is called f-Rad-supplemented if every finitely generated submodule of M has a Rad-supplement in M, and a module M is called amply f-Rad-supplemented if every finitely generated submodule of M has ample f-Rad-supplements in M (see [7]). A module M is called Rad-\oplus-supplemented if every submodule has a Rad-supplement that is a direct summand of M [3] and [5].

Recall from Al-Khazzi and Smith [1] that a module M is said to have the property (P^*) if for every submodule N of M there exists a direct summand K of M such that $K \leq N$ and $\frac{N}{K} \subseteq \text{Rad}(\frac{M}{K})$. The authors have obtained in the same paper the various properties of modules with the property (P^*). Radical modules have the property (P^*). It is clear that every lifting module has the property (P^*) and every module with the property (P^*) is Rad-\oplus-supplemented.

Let $f : P \longrightarrow M$ be an epimorphism. If $\text{Ker}(f) \ll P$, then f is called cover, and if P is a projective module, then a cover f is called a projective cover [11]. Xue [12] calls f a generalized cover if $\text{Ker}(f) \leq \text{Rad}(P)$, and calls a generalized cover f a generalized projective cover if P is a projective module. In the spirit of [12], a module M is said to be (generalized) semiperfect if every factor module of M has a (generalized) projective cover. A module M is said to be f-semiperfect if, for every finitely generated submodule $U \leq M$, the factor module $\frac{M}{U}$ has a projective cover in M [11]. Let M be an R-module. M is called generalized f-semiperfect module if, for every finitely generated submodule $U \leq M$, the factor module $\frac{M}{U}$ has a generalized projective cover in M [8].

In this study, we obtain some elementary facts about the properties (GP^*) and $(N - GP^*)$ which are a proper generalizations of the property (P^*). Especially, we give a relation for G^*-supplemented modules. We prove that every direct summand of a module that have the property (GP^*) has the property (GP^*). We show that a module M has the property $(N - GP^*)$ if and only if, for all direct summands M' and a coclosed submodule N' of N,
M' has the property $(N' - GP^*)$ for right R-modules M and N. We obtain
that Let $M = \bigoplus_{i=1}^{n} M_i$ be a module and M_i is a fully invariant submodule
of M for all $i \in \{1, 2, \ldots, n\}$. Then M has the property (GP^*) if and only if
M_i has the property (GP^*) for all $i \in \{1, 2, \ldots, n\}$. We illustrate a module
with the property (GP^*) which doesn’t have the property (P^*). We give a
characterization of generalized f-semiperfect rings via the property (GP^*).

2. Modules with the Properties of (GP^*) and $(N - GP^*)$

Definition 2.1. A module M has the property (GP^*) if, for every $\gamma \in \text{End}_R(M)$ there exists a direct summand N of M such that $N \subseteq \text{Im}(\gamma)$ and $\frac{\text{Im}(\gamma)}{N} \subseteq \text{Rad}(\frac{M}{N})$.

Proposition 2.1. The following conditions are equivalent for a module M.

1. M has the property (GP^*).
2. For every $\gamma \in \text{End}_R(M)$, there exists a decomposition $M = M_1 \oplus M_2$ such that $M_1 \subseteq \text{Im}(\gamma)$ and $M_2 \cap \text{Im}(\gamma) \subseteq \text{Rad}(M_2)$.
3. For every $\gamma \in \text{End}_R(M)$, $\text{Im}(\gamma)$ can be represented as $\text{Im}(\gamma) = N \oplus N'$, where N is a direct summand of M and $N' \subseteq \text{Rad}(M)$.

Proof. (1) \Rightarrow (2) By the hypothesis, there exist direct summands M_1, M_2 of M such that $M_1 \subseteq \text{Im}(\gamma)$, $M = M_1 \oplus M_2$ and $\text{Im}(\gamma) = \text{Rad}(\frac{M_1}{M_2}) \cdot \text{Rad}(M_2)$ since M_2 is a Rad-supplement of M_1 in M, $\text{Rad}(\frac{M}{M_1} \oplus M_2) = \frac{\text{Rad}(M) + M_1}{M_1}$ (See [13, Lemma 1.1]). Then $\frac{\text{Im}(\gamma)}{M_1} \subseteq \frac{\text{Rad}(M) + M_1}{M_1}$. So we have $\text{Im}(\gamma) \subseteq \text{Rad}(M_2) + M_1$. By the modular law, $M_2 \cap \text{Im}(\gamma) \subseteq \text{Rad}(M_2)$.

(2) \Rightarrow (3) For every $\gamma \in \text{End}_R(M)$, there exists a decomposition $M = M_1 \oplus M_2$ such that $M_1 \subseteq \text{Im}(\gamma)$ and $M_2 \cap \text{Im}(\gamma) \subseteq \text{Rad}(M_2)$. So $\text{Im}(\gamma) = M_1 \oplus (\text{Im}(\gamma) \cap M_2)$ by the modular law. Say $N = M_1$ and $N' = \text{Im}(\gamma) \cap M_2$. Therefore $\text{Im}(\gamma) = N \oplus N'$, where N is a direct summand of M and $N' \subseteq \text{Rad}(M)$.

(3) \Rightarrow (1) By the hypothesis, for every $\gamma \in \text{End}_R(M)$, $\text{Im}(\gamma) = N \oplus N'$ where N is a direct summand of M and $N' \subseteq \text{Rad}(M)$. Thus there exists a direct summand N of M such that $N \subseteq \text{Im}(\gamma)$. We have $\frac{\text{Im}(\gamma)}{N} = \frac{N \oplus N'}{N} \subseteq \frac{N + \text{Rad}(M)}{N} \subseteq \text{Rad}(\frac{M}{N})$. \hfill \square

Definition 2.2. A module M has the property $(N - GP^*)$ if, for every homomorphism $\gamma : M \rightarrow N$, there exists a direct summand L of N such that $L \subseteq \text{Im}(\gamma)$ and $\frac{\text{Im}(\gamma)}{L} \subseteq \text{Rad}(\frac{N}{L})$.

It is clear that a right module M has the property (GP^*) if and only if M has the property $(M - GP^*)$.

Recall from [4, 3.6] that a submodule N of M is called coclosed in M if, N has no proper submodule K for which $K \subset N$ is cosmall in M, that is, $\frac{N}{K} \ll \frac{M}{K}$. Obviously any direct summand N of M is coclosed in M.

Theorem 2.1. Let M and N be right R-modules. Then M has the property $(N - GP^*)$ if and only if, for all direct summands M' and a coclosed submodule N' of N, M' has the property $(N' - GP^*)$.

Proof. (\implies) Let $M' = eM$ for some $e^2 = e \in \text{End}_R(M)$ and let N' be a coclosed submodule of N. Assume that $\alpha \in \text{Hom}(M', N')$. Since $\alpha(eM) = \alpha(M') \subseteq N' \subseteq N$ and M has the property $(N - GP^*)$, there exists a decomposition $N = N_1 \oplus N_2$ such that $N_1 \subseteq \text{Im}(\alpha(e))$ and $N_2 \cap \text{Im}(\alpha(e)) \subseteq \text{Rad}(M_2) \subseteq \text{Rad}(N)$. Then we have $N' = N_1 \oplus (N_2 \cap N')$ by the modular law. Since N' is a coclosed submodule of N, then $\text{Rad}(N') = \text{Rad}(N) \cap N'$ by [4, 3.7(3)]. So $N_2 \cap N' \cap \text{Im}(\alpha) \subseteq \text{Rad}(N')$. By using [4, 3.7(3)] once again, we get $N_2 \cap N' \cap \text{Im}(\alpha) \subseteq \text{Rad}(N_2 \cap N')$. Therefore M' has the property $(N' - GP^*)$.

(\impliedby) Clear.

Corollary 2.1. The following conditions are equivalent for a module M.

(1) M has the property (GP^*).

(2) For any coclosed submodule N of M, every direct summand L of M has the property $(N - GP^*)$.

Corollary 2.2. Every direct summand of a module that have the property (GP^*) has the property (GP^*).

Proposition 2.2. Let M be an indecomposable module. Assume that, for $\delta \in \text{End}_R(M)$, $\text{Im}(\delta) \subseteq \text{Rad}(M)$ implies $\delta = 0$. Then, M has the property (GP^*) if and only if every nonzero endomorphism $\delta \in \text{End}_R(M)$ is an epimorphism.

Proof. Assume that $0 \neq \delta \in \text{End}_R(M)$. Since M has the property (GP^*), there exists a decomposition $M = M_1 \oplus M_2$ with $M_1 \subseteq \text{Im}(\delta)$ and $M_2 \cap \text{Im}(\delta) \subseteq \text{Rad}(M_2)$. Since M is indecomposable, $M_1 = 0$ or $M_1 = M$. If $M_1 = 0$, then $\text{Im}(\delta) \subseteq \text{Rad}(M)$. By the hypothesis $\delta = 0$; a contradiction. Thus, $M_1 = M$ and hence, δ is epimorphism. The converse is clear.

Recall from [4, 4.27] that a module M is said to be Hopfian if every surjective endomorphism of M is an isomorphism.

Proposition 2.3. Let M be a noetherian module that has the property (GP^*). If every endomorphism γ of M, $\text{Im}(\gamma) \subseteq \text{Rad}(M)$ implies that $\gamma = 0$. Then there exists a decomposition $M = M_1 \oplus M_2 \oplus \ldots \oplus M_n$, where M_i is an indecomposable noetherian modules that has the property (GP^*) for which $\text{End}_R(M_i)$ is a division ring.

Proof. Since M is noetherian, it has a finite decomposition noetherian direct summands. By Corollary 2.2, every direct summand has the property (GP^*). By Proposition 2.2, in view of the fact that every noetherian module is Hopfian, each indecomposable direct summand has a division ring.

\[\square\]
Definition 2.3. A module M is called $G^* -$supplemented if, for every $\gamma \in \text{End}_R(M)$, $\text{Im}(\gamma)$ has a Rad-supplement in M, and a module M is called amply $G^* -$supplemented if, for every $\gamma \in \text{End}_R(M)$, $\text{Im}(\gamma)$ has ample Rad-supplements in M.

It is clear that every module that has the property (GP^*) is $G^* -$supplemented by the Definition 2.3.

Proposition 2.4. Let M be an amply $G^* -$supplemented R-module. Then every direct summand of M is amply $G^* -$supplemented.

Proof. Let N be a direct summand of M. Then $M = N \oplus N'$ for some $N' \subseteq M$. Suppose that $f \in \text{End}_R(N)$ and $N = \text{Im}(f) + K$. Thus, $M = \text{Im}(f) + K + N'$. Note that $\text{Im}(f) = \text{Im}(\iota f \pi)$, where ι is the injection map from N to M and π is the projection map from M onto N. Since M is amply $G^* -$supplemented, there exists a Rad-supplement L of $N' + K$ with $L \subseteq \text{Im}(f)$. We get $K \cap L \subseteq (N' + K) \cap L \subseteq \text{Rad}(L)$ and $M = L + N' + K$. Thus $N = K + L$ by the modular law. So $K + L = N$ and $K \cap L \subseteq \text{Rad}(L)$. Therefore N is amply $G^* -$supplemented.

Proposition 2.5. Let M be an amply $G^* -$supplemented distributive module and let N be a direct summand of M for every Rad-supplement submodule N of M. Then M is a $G^* -$supplemented module.

Proof. Let $f \in \text{End}_R(M)$, let K be a Rad-supplement of $\text{Im}(f)$ in M, and let N a Rad-supplement of K in M with $N \subseteq \text{Im}(f)$. By the hypothesis, $M = N \oplus N'$ for some $N' \subseteq M$. $\text{Im}(f) = \text{Im}(f) \cap (N + K) = N + (\text{Im}(f) \cap K)$. Since $\text{Im}(f) \cap K \subseteq \text{Rad}(K)$, then we have $\text{Im}(f) \cap K \cap N' \subseteq \text{Rad}(K)$. As M is distributive, $\text{Im}(f) + K \cap N' = N + K = M$ and $K = K \cap (N \oplus N') = (K \cap N) \oplus (K \cap N')$. So $K \cap N'$ is a direct summand of K. Since $\text{Im}(f) \cap K \cap N' \subseteq K \cap N'$, $\text{Im}(f) \cap K \cap N' \subseteq \text{Rad}(K \cap N')$. Therefore M is $G^* -$supplemented.

Definition 2.4. A module M is called $N - G^* -$supplemented if, for every homomorphism $\phi : M \rightarrow N$, there exists $L \subseteq N$ such that $\text{Im}(\phi) + L = N$ and $\text{Im}(\phi) \cap L \subseteq \text{Rad}(L)$. It is clear that the right module M is $G^* -$supplemented if and only if M is $M - G^* -$supplemented.

Recall from [11] that a submodule U of an R-module M is called fully invariant if $f(U)$ is contained in U for every R-endomorphism f of M. A module M is called duo, if for every submodule of M is fully invariant [9].

Theorem 2.2. Let M_1, M_2 and N be modules. If N is $M_i - G^* -$supplemented for $i = 1, 2$, then N is $M_1 \oplus M_2 - G^* -$supplemented. The converse is true if $M_1 \oplus M_2$ is a duo module.

Proof. Suppose that N is $M_i - G^* -$supplemented for $i = 1, 2$. We prove that N is $M_1 \oplus M_2 - G^* -$supplemented. Let $\phi = (\pi_1 \phi, \pi_2 \phi)$ be any homomorphism from N to $M_1 \oplus M_2$, where π_i is the projection map from $M_1 \oplus M_2$.
into M_i for $i = 1, 2$. Since N is $M_i - G^*$-supplemented, there exists a submodule K_i of M_i such that $\pi_i \phi N + K_i = M_i$ and $\pi_i \phi N \cap K_i \subseteq \text{Rad}(K_i)$ for $i = 1, 2$. Let $K = K_1 \oplus K_2$. Then $M_1 \oplus M_2 = \pi_1 \phi N + \pi_2 \phi N + K_1 + K_2 = \phi N + K$. Since $\phi N \cap (K_1 + K_2) \subseteq (\phi N + K_1) \cap K_2 + (\phi N + K_2) \cap K_1$, we get $\phi N \cap (K_1 + K_2) \subseteq (\phi N + M_1) \cap K_2 + (\phi N + M_2) \cap K_1$. Since $\phi N + M_1 = \pi_2 \phi N \oplus M_1$ and $\phi N + M_2 = \pi_1 \phi N \oplus M_2$, we conclude that $\phi N \cap K \subseteq (\pi_2 \phi N \cap K_2) + (\pi_1 \phi N + K_1)$. Since $\pi_i \phi N \cap K_i \subseteq \text{Rad}(K_i)$ for $i = 1, 2$, we get $\phi N \cap K \subseteq \text{Rad}(K)$. Hence, N is $M_1 \oplus M_2 - G^*$-supplemented.

Conversely, let N be $M_1 \oplus M_2 - G^*$-supplemented. Let ϕ be a homomorphism from N to M_1. Then $\text{Im}(\iota \phi) = \text{Im}(\phi)$, where ι is the canonical inclusion from M_1 to $M_1 \oplus M_2$. Since N is $M_1 \oplus M_2 - G^*$-supplemented, there exists $K \subseteq M_1 \oplus M_2$ such that $M_1 \oplus M_2 = \text{Im}(\phi) + K$ and $\text{Im}(\phi) \cap K \subseteq \text{Rad}(K)$. Thus, $M_1 = \text{Im}(\phi) + (K \cap M_1)$ and $\text{Im}(\phi) \cap K \cap M_1 = \text{Im}(\phi) \cap K \subseteq \text{Rad}(K)$. As $M_1 \oplus M_2$ is a duo module and $K = K_1 \oplus K_2 \leq M_1 \oplus M_2$, $K \cap M_1$ is a direct summand of K. Hence $\text{Im}(\phi) \cap K \cap M \subseteq \text{Rad}(K \cap M_1)$. Therefore N is an $M_1 - G^*$-supplemented.

Corollary 2.3. Suppose that $M = M_1 \oplus M_2$ and M is a G^*-supplemented module for $i = 1, 2$. Then M is G^*-supplemented and, for every $f \in \text{End}_R(M)$, $\text{Im}(f)$ has a Rad-supplement of the form $K_1 + K_2$ with $K_1 \subseteq M_1$ and $K_2 \subseteq M_2$.

Proof. Follows from the proof of Theorem 2.2.

Theorem 2.3. Let $M = \bigoplus_{i=1}^n M_i$ be a module and M_i be a fully invariant submodule of M for all $i \in \{1, 2, \ldots, n\}$. Then M has the property (GP^*) if and only if M_i has the property (GP^*) for all $i \in \{1, 2, \ldots, n\}$.

Proof. The necessity follows from Theorem 2.1. Conversely, let N_i be a module that have the property (GP^*) for all $i \in \{1, 2, \ldots, n\}$. Also let $\phi = (\phi_{ij})_{i,j \in \{1, 2, \ldots, n\}} \in \text{End}(M)$ be arbitrary, where $(\phi_{ij}) \in \text{Hom}(M_j, M_i)$. Since M_i is a fully invariant submodule of M for all $i \in \{1, 2, \ldots, n\}$, we get $\text{Im}(\phi) = \bigoplus_{i=1}^n \text{Im}(\phi_{ii})$. As M_i has the property (GP^*), there exists a direct summand N_i of M_i and a submodule K_i of M_i with $N_i \subseteq \text{Im}(\phi_{ii})$, $\text{Im}(\phi_{ii}) = N_i + K_i$ and $K_i \subseteq \text{Rad}(M_i)$. We say $N = \bigoplus_{i=1}^n N_i$. Then N is a direct summand of M. Moreover, $\text{Im}(\phi) = \bigoplus_{i=1}^n \text{Im}(\phi_{ii}) = \sum_{i=1}^n N_i + \sum_{i=1}^n K_i$ and $\bigoplus_{i=1}^n K_i \subseteq \text{Rad}(\bigoplus_{i=1}^n M_i) = \text{Rad}(M)$. Therefore M has the property (GP^*).

Theorem 2.4. The following assertions are equivalent for a ring R.

(1) R is generalized f-semiperfect.
(2) R_R is f-Rad-supplemented.
(3) Every cyclic right ideal has a Rad-supplement in R_R.
(4) R_R is a G^*-supplemented module.
(5) R_R has the property (GP^*).

Proof. (1) \iff (2) \iff (3) By [8, Theorem 2.22].
(3) ⇒ (4) is clear because $\text{Im}(\gamma)$ is cyclic for every $\gamma \in \text{End}_R(R_R)$.

(4) ⇒ (3) Assume that $I = aR$ is any cyclic right ideal of R. Consider the R-homomorphism $\phi : R_R \rightarrow R_R$ defined by $\phi(r) = ar$; where $r \in R$. Then $\text{Im}(\phi) = I$. By (4), $\text{Im}(\phi) = I$ has a Rad-supplement in R_R.

(5) ⇒ (4) is clear.

(5) ⇒ (3) Suppose that R_R has the property (GP^*). Let $J = bR$ is any cyclic right ideal of R. Consider the R-homomorphism $\phi : R_R \rightarrow R_R$ defined by $\phi(r) = br$; where $r \in R$. Then $\text{Im}(\phi) = J$. By (5), there exists submodules R_1, R_2 of R_R such that $R_R = R_1 \oplus R_2$, $R_1 \subseteq \text{Im}(\phi) = J$ and $R_2 \cap \text{Im}(\phi) \subseteq \text{Rad}(R_2)$. So $R_R = J + R_2$ and $J \cap R_2 \subseteq \text{Rad}(R_2)$. Thus R_2 is a Rad-supplement of J in R_R. □

The equivalent condition for the property (P^*) if every submodule N of M there exist submodules K, K' of M such that $K \leq N$, $M = K \oplus K'$ and $N \cap K' \subseteq \text{Rad}(K')$ (See [1]).

Proposition 2.6. Let M be a module which has the property (P^*). Then M has the property (GP^*).

Proof. Let $\phi : M \rightarrow M$ be any homomorphism. Since M has the property (P^*), there exist submodules K, K' of M such that $K \leq \text{Im}(\phi)$, $M = K \oplus K'$ and $\text{Im}(\phi) \cap K' \subseteq \text{Rad}(K')$. So M has the property (GP^*). □

Example 2.1. (See [2]) Let F be any field. Consider the commutative ring R which is the direct product $\prod_{i=0}^{\infty} F_i$, where $F_i = F$. So R_R is a regular ring which is not semisimple. The right R-module R is f-Rad-supplemented but not Rad-supplemented. Since R_R is f-Rad-supplemented, R_R has the property (GP^*) by Theorem 2.4. As R_R is not Rad-supplemented, R_R has not the property (P^*).

References

Burcu Nişancı Türkmen

Amasya University

Faculty of Art and Science

Department of Mathematics

05100 Amasya

Turkey

E-mail address: burcunisancie@hotmail.com