Strong commutativity preserving derivations on Lie ideals of prime Γ-rings

Okan Arslan, Berna Arslan*

Abstract. Let M be a Γ-ring and $S \subseteq M$. A mapping $f : M \to M$ is called strong commutativity preserving on S if $[f(x), f(y)]_\alpha = [x, y]_\alpha$, for all $x, y \in S$, $\alpha \in \Gamma$. In the present paper, we investigate the commutativity of the prime Γ-ring M of characteristic not 2 with center $Z(M) \neq (0)$ admitting a derivation which is strong commutativity preserving on a nonzero square closed Lie ideal U of M. Moreover, we also obtain a related result when a mapping d is assumed to be a derivation on U satisfying the condition $d(u) \circ_\alpha d(v) = u \circ_\alpha v$, for all $u, v \in U$, $\alpha \in \Gamma$.

1. Introduction

Nobusawa [13] developed the concept of a gamma ring and then Barnes [1] weakened slightly the defining conditions for a gamma ring. After these definitions a number of mathematicians have studied on gamma rings in the sense of Barnes and Nobusawa and get results parallel to the ring theory (see for example [1], [11], [9]).

Let R be any ring. The symbol $[a, b]$ denotes $ab - ba$ for $a, b \in R$. R is called prime if $aRb = (0)$ implies either $a = 0$ or $b = 0$, and R is called semiprime if $aRa = (0)$ implies $a = 0$. An additive mapping d is called a derivation on R if $d(ab) = d(a)b + ad(b)$ holds for all $a, b \in R$.

A mapping f is said to be commutativity preserving on R if $[f(a), f(b)] = 0$ whenever $[a, b] = 0$, for all $a, b \in R$. In 1976, Watkins [14] obtained the first result on commutativity preserving maps for a $n \times n$ matrix algebra when $n \geq 4$ and f is a monomorphism on R. Recently, the study of commutativity preserving maps has become an active research area in ring theory (see for example [4], [6], [8], [12] and references therein).

2010 Mathematics Subject Classification. Primary: 16W25; Secondary: 16N60, 16Y99.

Key words and phrases. Prime gamma rings, Lie ideals, derivations, strong commutativity preserving maps.

Full paper. Received 3 July 2018, accepted 7 April 2019, available online 25 April 2019.

*Corresponding Author
Let \(S \) be a subset of \(R \). A map \(f \) is called strong commutativity preserving (SCP) on \(S \) if \([f(a), f(b)] = [a, b]\), for all \(a, b \in S \). Clearly, a map that is strong commutativity preserving on a set \(S \) is also commutativity preserving on \(S \), but the inverse is not true in general. The notion of a strong commutativity preserving map was first introduced by H.E. Bell and G. Mason [3]. Later, H.E. Bell and M.N. Daif [2] proved that if a semiprime ring \(R \) admits a nonzero derivation which is strong commutativity preserving on a right ideal \(\rho \) of \(R \), then \(\rho \subseteq Z(R) \) where \(Z(R) \) is the center of \(R \). In particular, \(R \) is commutative if \(\rho = R \). M. Brešar and C.R. Miers [5] characterized SCP additive maps on a semiprime ring. In [10], Brešar and Miers’s result was extended to Lie ideals of prime rings by J.-S. Lin and C.-K. Liu. Later, Q. Deng and M. Ashraf [7] proved that if there exists a derivation \(d \) of a semiprime ring \(R \) and a mapping \(f : I \rightarrow R \) defined on a nonzero ideal \(I \) of \(R \) such that \([f(a), d(b)] = [a, b]\), for all \(a, b \in I \), then \(R \) contains a nonzero central ideal. They also showed that \(R \) is commutative when \(I = R \). There are lots of generalizations similar to these results can be found in the literature.

Recently, X. Xu, J. Ma and Y. Zhou [15] proved that a semiprime \(\Gamma \)-ring with a strong commutativity preserving derivation on itself must be commutative and that a strong commutativity preserving endomorphism \(\sigma \) on a semiprime \(\Gamma \)-ring \(M \) must have the form \(\sigma(a) = a + \xi(a) \) (\(a \in M \)) where \(\xi \) is a map from \(M \) into its center, which extends some results by Bell and Daif to semiprime \(\Gamma \)-rings.

Motivated by all these results, in the present paper, we study strong commutativity preserving derivations on a nonzero square closed Lie ideal of prime \(\Gamma \)-rings and prove that if \(M \) is a prime \(\Gamma \)-ring of characteristic not 2 such that its center \(Z(M) \neq (0) \) and \(d \) is a SCP derivation on a nonzero square closed Lie ideal \(U \) of \(M \), then \(U \subseteq Z(M) \). In particular, \(M \) is commutative if \(U = M \). Moreover, we also obtain the same result when a mapping \(d \) is assumed to be a derivation on \(U \) satisfying the condition \(d(u) \circ_{\alpha} d(v) = u \circ_{\alpha} v \), for all \(u, v \in U, \alpha \in \Gamma \).

2. Preliminaries

Before giving our results, we first present some preliminary definitions. In this paper, \(M \) will represent a \(\Gamma \)-ring in the sense of Barnes [1] unless otherwise stated.

An additive subgroup \(K \) of a \(\Gamma \)-ring \(M \) is called a left (resp. right) ideal of \(M \) if \(\Gamma K \subseteq K \) (resp. \(K \Gamma \subseteq K \)). A left ideal \(K \) of a \(\Gamma \)-ring \(M \) is called an ideal of \(M \) if it is also a right ideal of \(M \). The set of all elements \(a \) satisfying \(aab = boa \) for all \(b \in M \) and \(\alpha \in \Gamma \) is called the center of \(M \).

A \(\Gamma \)-ring \(M \) is said to be prime if \(a \Gamma M \Gamma b = (0) \) for \(a, b \in M \) implies that \(a = 0 \) or \(b = 0 \). An additive mapping \(d \) is called a derivation on \(M \) if \(d(aab) = d(a)ab + aad(b) \), for all \(a, b \in M \) and \(\alpha \in \Gamma \).
Let M be a Γ-ring and $a, b \in M$, $\alpha \in \Gamma$. The commutator of a and b with respect to α is defined as the element $a\alpha b - b\alpha a$ and denoted by $[a, b]_\alpha$. According to this definition we have the following equations,

\begin{equation}
[a\alpha b, c]_\beta = [a, c]_\beta \alpha b + a\alpha [b, c]_\beta + a\alpha c\beta b - a\beta c\alpha b,
\end{equation}

\begin{equation}
[a, b\alpha c]_\beta = [a, b]_\beta \alpha c + b\alpha [a, c]_\beta + b\beta a\alpha c - b\alpha a\beta c,
\end{equation}

where $a, b, c \in M$, $\alpha, \beta \in \Gamma$. Similarly, the anti-commutator of a and b with respect to α is defined as the element $a\alpha b + b\alpha a$ and denoted by $a \circ_\alpha b$. According to this definition we have the following equations,

\begin{equation}
(a\alpha b) \circ_\beta c = a\alpha (b \circ_\beta c) - [a, c]_\beta \alpha b + a\alpha c\beta b - a\beta c\alpha b
\end{equation}

\begin{equation}
= (a \circ_\beta c)\alpha b + a\alpha [b, c]_\beta + a\beta c\alpha b - a\alpha c\beta b,
\end{equation}

\begin{equation}
a \circ_\beta (b\alpha c) = (a \circ_\beta b)\alpha c - b\alpha [a, c]_\beta + b\beta a\alpha c - b\alpha a\beta c
\end{equation}

\begin{equation}
= b\alpha (a \circ_\beta c) + [a, b]_\beta \alpha c + b\alpha a\beta c - b\beta a\alpha c,
\end{equation}

where $a, b, c \in M$, $\alpha, \beta \in \Gamma$.

An additive subgroup U of a Γ-ring M is called a Lie ideal if $[u, m]_\alpha \in U$, for all $u \in U$, $m \in M$ and $\alpha \in \Gamma$. A Lie ideal U of M is said to be a square closed Lie ideal of M, if $u\alpha u \in U$ for all $u \in U$ and $\alpha \in \Gamma$. Clearly, $u\alpha v + v\alpha u \in U$, for all $u, v \in U$, $\alpha \in \Gamma$. Similarly, we have $u\alpha v - v\alpha u \in U$.

Moreover, by using these relations, we get $2u\alpha v \in U$ which will be used in the whole paper frequently.

A map f from a Γ-ring M into itself is called strong commutativity preserving (SCP) on a subset S of M if $[f(a), f(b)]_\alpha = [a, b]_\alpha$ holds for all $a, b \in S$ and $\alpha \in \Gamma$.

3. The Results

First, we work on SCP derivations on Lie ideals of prime Γ-rings. The following lemma will play an crucial role in the proofs of our main theorems.

Lemma 3.1. Let M be a prime Γ-ring and $Z(M) \neq (0)$. Then the equations

\begin{equation}
[a\alpha b, c]_\beta = [a, c]_\beta \alpha b + a\alpha [b, c]_\beta,
\end{equation}

\begin{equation}
[a, b\alpha c]_\beta = [a, b]_\beta \alpha c + b\alpha [a, c]_\beta
\end{equation}

hold for all $a, b, c \in M$, $\alpha, \beta \in \Gamma$.

Proof. For any $c \in M$, $\alpha, \beta \in \Gamma$, the symbol $[\alpha, \beta]_c$ denotes $\alpha c\beta - \beta c\alpha$. Then, the commutator formulas in (1) and (2) become

\begin{equation}
[a\alpha b, c]_\beta = [a, c]_\beta \alpha b + a\alpha [b, c]_\beta + a[\alpha, \beta]_c b
\end{equation}

and

\begin{equation}
[a, b\alpha c]_\beta = [a, b]_\beta \alpha c + b\alpha [a, c]_\beta + b[\beta, \alpha]_c a c
\end{equation}

for all $a, b, c \in M$, $\alpha, \beta \in \Gamma$.
Since \(Z(M) \neq (0) \), there exists a nonzero element \(x \) in \(Z(M) \). Thus,
\[
\begin{align*}
 x \gamma y \delta a c \beta b & = y \gamma x \delta a c \beta b = y \gamma a \delta x a c \beta b \\
 & = y \gamma a \delta c a x \beta b = y \gamma a \delta c a b \beta x \\
 & = y \gamma a \delta x \beta c a b = y \gamma x \delta a \beta c a b \\
 & = x \gamma y \delta a \beta c a b,
\end{align*}
\]
for all \(a, b, c, y \in M, \alpha, \beta, \gamma, \delta \in \Gamma \). Then we have that
\[
(4) \quad x \gamma y \delta a [\alpha, \beta] c b = 0,
\]
for all \(a, b, c, y \in M, \alpha, \beta, \gamma, \delta \in \Gamma \). Multiplying the two sides of (3) by \(x \gamma y \delta \) from the left hand side, and then comparing with (4) we get for all \(a, b, c, y \in M \), \(\alpha, \beta, \gamma, \delta \in \Gamma \)
\[
x \gamma y \delta [a c b, \beta] = x \gamma y \delta [a, c] \beta a b + x \gamma y \delta a a [b, c] \beta.
\]
That is \(x \Gamma M \Gamma ([a c b, \beta] - [a, c] \beta a b - a a [b, c] \beta) = 0 \), for all \(a, b, c \in M \), \(\alpha, \beta \in \Gamma \). Since \(M \) is prime and \(x \) is nonzero, we have
\[
[a c b, \beta] - [a, c] \beta a b - a a [b, c] \beta = 0,
\]
for all \(a, b, c \in M \), \(\alpha, \beta \in \Gamma \). For the second equation, one can use the same method above, and this completes the proof. \(\square \)

Now, we can give a similar result for the anti-commutator formulas of \(\Gamma \)-rings.

Lemma 3.2. Let \(M \) be a prime \(\Gamma \)-ring in the sense of Barnes and \(Z(M) \neq (0) \). Then the equations
\[
(aa b) \circ_\beta c = a a (b \circ_\beta c) - [a, c] \beta a b
\]
hold for all \(a, b, c \in M, \alpha, \beta \in \Gamma \).

Proof. It can be proved by using the techniques of Lemma 3.1. \(\square \)

We need the following results to prove our main theorems.

Lemma 3.3. Let \(M \) be a prime \(\Gamma \)-ring of characteristic not 2 with the center \(Z(M) \neq (0) \) and \(U \) be a Lie ideal of \(M \). If \(U \not\subseteq Z(M) \), then there exists an ideal \(K \) of \(M \) such that \([K, M] \Gamma \subseteq U \) but \([K, M] \Gamma \not\subseteq Z(M) \).

Proof. First, we show that the Lie product of \(U \) by itself is different from zero. Suppose that \([U, U] \Gamma = (0) \). Then we have \([a, [a, m] \alpha] \beta = 0 \), for all \(a \in U, m \in M \) and \(\alpha, \beta \in \Gamma \). Replacing \(m \) by \(m \gamma x \) for \(\gamma \in \Gamma \) and \(x \in M \), we get
\[
(5) \quad [a, m] \beta \gamma [a, x] \alpha + [a, m] \alpha \gamma [a, x] \beta = 0.
\]
Now, replacing β by α in (5) we have $[a, m]_\alpha \gamma [a, x]_\alpha = 0$, for all $a \in U$, $m, x \in M$ and $\alpha, \gamma \in \Gamma$. Replacing x by $y \delta x$ for $y \in M$ and $\delta \in \Gamma$ in the last equation, we get $[a, m]_\alpha \Gamma M T [a, x]_\alpha = (0)$, for all $a \in U$, $m, x \in M$ and $\alpha \in \Gamma$. Therefore, we have $U \subseteq Z(M)$ since M is prime. But this contradicts with the hypothesis of the theorem. Hence, there exist $u, v \in U$ and $\beta \in \Gamma$ such that $[u, v]_\beta \neq 0$.

Let $K := M \Gamma [u, v]_\beta \Gamma M$ and $T(U) := \{x \in M \mid [x, M]_\Gamma \subseteq U\}$. Then, it is clear that $K \neq (0)$ is an ideal of $M; T(U)$ is a Lie ideal and a subring of M. Moreover, $U \subseteq T(U)$. Since $[u, v]_{\gamma m} = [u, v]_\beta \gamma m + v \gamma [u, m]_\beta$ for all $m \in M$ and $\gamma \in \Gamma$, we get $[u, v]_\beta \Gamma M \subseteq T(U)$. Hence,

$$\left[[u, v]_\beta \alpha m, n\right]_\gamma \in T(U),$$

for all $n, m \in M$ and $\alpha, \gamma \in \Gamma$. Expanding this we get $n \gamma [u, v]_\beta \alpha m \in T(U)$ for all $n, m \in M$ and $\alpha, \gamma \in \Gamma$. Then, we have $M \Gamma [u, v]_\beta \Gamma M = K \subseteq T(U)$ which yields to $[K, M]_\Gamma \subseteq U$.

Now, suppose $[K, M]_\Gamma \subseteq Z(M)$. Therefore, we have $[K, [K, M]_\Gamma]_\Gamma = (0)$ and using the same argument above we get $K \subseteq Z(M)$. Let $x \in M$. Then $n \alpha k \gamma m \in K$ for all $n, m \in M$, $k \in K$ and $\alpha, \gamma \in \Gamma$. Since $K \subseteq Z(M)$ we have $[x, n \alpha k \gamma m]_\beta = 0$. Expanding this we get $K \Gamma M \Gamma [x, M]_\Gamma = (0)$. Therefore, $x \in Z(M)$ since M is prime and $K \neq (0)$. But this contradicts with $U \not\subseteq Z(M)$. This completes the proof. \hfill \Box

Lemma 3.4. Let M be a prime Γ-ring of characteristic not 2 with the center $Z(M) \neq (0)$ and U be a Lie ideal of M. If $U \not\subseteq Z(M)$ and $a, b \in M$ such that $a \Gamma U \Gamma b = (0)$, then either $a = 0$ or $b = 0$.

Proof. By Lemma 3.3, there exists an ideal K of M such that $[K, M]_\Gamma \subseteq U$ but $[K, M]_\Gamma \not\subseteq Z(M)$. Let $u \in U$, $k \in K$, $m \in M$ and $\alpha, \beta, \gamma \in \Gamma$. Then, we have

$$[k \alpha \alpha \beta u, m]_\gamma \in [K, M]_\Gamma \subseteq U.$$

It follows from that

$$0 = a \lambda [k \alpha \alpha \beta u, m]_\gamma e b = a \lambda k \alpha \alpha \beta [u, m]_\gamma e b + a \lambda [k \alpha \alpha a, m]_\gamma \beta u e b$$

$$= a \lambda k \alpha \alpha a \gamma m \beta u e b - a \lambda m \gamma k \alpha \alpha \beta u e b$$

$$= a \lambda k \alpha \alpha a \gamma m \beta u e b,$$

for all $u \in U$, $k \in K$, $m \in M$ and $\alpha, \beta, \gamma, \lambda, \epsilon \in \Gamma$. Therefore, we get $a \Gamma K \Gamma a = (0)$ or $U \Gamma b = (0)$ since M is prime. In the first case, we see that a must be zero by using the primeness of M. In the second case, we get

$$[u, m]_\alpha \gamma b = 0,$$

for all $u \in U$, $m \in M$ and $\alpha, \gamma \in \Gamma$. Expanding this we have

$$[u \gamma b, m]_\alpha - u \gamma [b, m]_\alpha = 0,$$
that is \(u\gamma mab = 0 \), for all \(u \in U, m \in M \) and \(\alpha, \gamma \in \Gamma \). Therefore, \(b = 0 \) since \(M \) is prime and \(U \neq (0) \).

Lemma 3.5. Let \(M \) be a prime \(\Gamma \)-ring with the center \(Z(M) \neq (0) \) and \(x \in M \). If \(a \in Z(M) \) and \(a\gamma x \in Z(M) \) for all \(\gamma \in \Gamma \), then \(a = 0 \) or \(x \in Z(M) \).

Proof. Suppose that \(a \neq 0 \). Since \(a\gamma x \in Z(M) \), we have \([a\gamma x, m]_{\delta} = 0\) for all \(m \in M \) and \(\delta, \gamma \in \Gamma \). Expanding this we get \(a\gamma [x, m]_{\delta} = 0 \). Replacing \(m \) by \(m\beta n \) for \(n \in M \) and \(\beta \in \Gamma \) we conclude that \(x \in Z(M) \) since \(M \) is prime. This completes the proof. \(\square \)

Lemma 3.6. Let \(M \) be a prime \(\Gamma \)-ring of characteristic not 2 with the center \(Z(M) \neq (0) \) and \(U \) be a Lie ideal of \(M \). If \([U, U]_{\Gamma} \subseteq Z(M)\), then \(U \subseteq Z(M) \).

Proof. By hypothesis we have \([u, [u, x]_{\alpha}]_{\beta} \in Z(M)\) for all \(u \in U, x \in M \) and \(\alpha, \beta \in \Gamma \). Since

\[
[u, [u, x]_{\alpha}]_{\beta} \gamma u = [u, [u, x]_{\alpha} \gamma u]_{\beta} = [u, [u, x\gamma u]_{\alpha}]_{\beta}
\]

and \([u, [u, x\gamma u]_{\alpha}]_{\beta} \in [U, U]_{\Gamma}\), we have \([u, [u, x]_{\alpha}]_{\beta} \gamma u \in Z(M)\). Therefore, we get \([u, [u, x]_{\alpha}]_{\beta} = 0\) or \(u \in Z(M) \) by Lemma 3.5. Now, let \([u, [u, x]_{\alpha}]_{\beta} = 0\) for all \(x \in M, \alpha, \beta \in \Gamma \) and for some \(u \in U \). Replacing \(x \) by \(x\gamma m \) we get

\[
[u, x]_{\beta} \gamma [u, m]_{\alpha} + [u, x]_{\alpha} \gamma [u, m]_{\beta} = 0,
\]

for all \(x, m \in M \) and \(\alpha, \beta, \gamma \in \Gamma \). Replacing \(\beta \) by \(\alpha \) in the equation (6) we get \([u, x]_{\alpha} \gamma [u, m]_{\alpha} = 0\) since \(M \) is a \(\Gamma \)-ring of characteristic not 2. Replacing \(m \) by \(m\delta n \) for \(n \in M, \delta \in \Gamma \) in the last equation, we conclude that \(u \in Z(M) \) since \(M \) is prime. Consequently, we see that \(U \) must be a subset of \(Z(M) \). \(\square \)

Theorem 3.1. Let \(M \) be a prime \(\Gamma \)-ring of characteristic not 2 and \(U \) be a nonzero square closed Lie ideal of \(M \). If \(d \) is a SCP derivation on \(U \), then \(U \subseteq Z(M) \) or \(Z(M) = (0) \).

Proof. Suppose that \(Z(M) \neq (0) \). We have \([d(x), d(y)]_{\alpha} = [x, y]_{\alpha}\) for all \(x, y \in U \) and \(\alpha \in \Gamma \) by hypothesis. Replacing \(y \) by \(2y\beta z \) for \(z \in U \) and \(\beta \in \Gamma \), we get

\[
[d(x), d(2y\beta z)]_{\alpha} = [x, 2y\beta z]_{\alpha},
\]

for all \(x, y, z \in U \) and \(\alpha, \beta \in \Gamma \). By applying Lemma 3.1, we expand the last equation and we get

\[
d(y)\beta [d(x), z]_{\alpha} + [d(x), y]_{\alpha} \beta d(z) = 0,
\]

since \(M \) is a \(\Gamma \)-ring of characteristic not 2. Replacing \(z \) by \(2z\gamma t \) for \(z, t \in U \) and \(\gamma \in \Gamma \) in the equation (7) we obtain that

\[
d(y)\beta [d(x), z]_{\alpha} \gamma t + d(y)\beta z\gamma [d(x), t]_{\alpha} + [d(x), y]_{\alpha} \beta d(z) \gamma t + [d(x), y]_{\alpha} \beta z \gamma d(t) = 0,
\]

(8)
since M is a Γ-ring of characteristic not 2. Multiplying the two sides of (7) by γt from the right hand side, we have

\[(9) \quad d(y)\beta[d(x),z]_\alpha \gamma t + [d(x),y]_\alpha \beta d(z)\gamma t = 0,
\]
for all $x, y, z, t \in U$ and $\alpha, \beta, \gamma \in \Gamma$. Comparing (9) with (8), we have that

\[d(y)\beta z\gamma[d(x),t]_\alpha + [d(x),y]_\alpha \beta z\gamma d(t) = 0,
\]
for all $x, y, z, t \in U$ and $\alpha, \beta, \gamma \in \Gamma$. Since U is a nonzero square closed Lie ideal of M, we have $[U,U]_\Gamma$ is a nonzero square closed Lie ideal of M, too. Writing $t = d(x)$ for $x \in [U,U]_\Gamma$, we obtain that

\[(10) \quad [d(x),y]_\alpha \beta z\gamma d^2(x) = 0,
\]
for all $y, z \in U$, $x \in [U,U]_\Gamma$ and $\alpha, \beta, \gamma \in \Gamma$. If we replace y by $d(y)$ for $y \in [U,U]_\Gamma$ in the equation (10), we obtain $[x,y]_\alpha \Gamma U \Gamma d^2(x) = (0)$ for all $x, y \in [U,U]_\Gamma$, and $\alpha \in \Gamma$ since d is SCP on U. Therefore,

\[[x,y]_\alpha \beta 2[m,z]_\alpha \Gamma U \Gamma [x,y]_\alpha \beta 2[m,z]_\alpha = (0),
\]
since

\[[x,y]_\alpha \Gamma U \Gamma [d^2(x),d^2(y)]_\alpha \beta 2[m,z]_\alpha = (0),
\]
for all $x, y \in [U,U]_\Gamma$, $m \in M$, $z \in U$ and $\alpha, \beta \in \Gamma$. Since M is a Γ-ring of characteristic not 2, we have $[x,y]_\alpha \beta [m,z]_\alpha = 0$ by Lemma 3.4. Replacing m by $m\gamma t$ for $t \in M$ and $\gamma \in \Gamma$ we get

\[[x,y]_\alpha \beta m\gamma [t,z]_\alpha = 0,
\]
for all $x, y \in [U,U]_\Gamma$, $m, t \in M$, $z \in U$ and $\alpha, \beta, \gamma \in \Gamma$. By the primeness of the Γ-ring M, we get either $[x,y]_\alpha = 0$ or $[t,z]_\alpha = 0$, for all $x, y \in [U,U]_\Gamma$, $z \in U$, $t \in M$ and $\alpha \in \Gamma$. In the second case, we see that $z \in Z(M)$ that is $U \subseteq Z(M)$. In the first case, using Lemma 3.6, we have $[U,U]_\Gamma \subseteq Z(M)$. Consequently, applying Lemma 3.6 again, we get that $U \subseteq Z(M)$ which completes the proof. \[\square\]

In particular, if we take $U = M$, then Theorem 3.1 gives a commutativity criterion as follows.

Corollary 3.1. Let M be a prime Γ-ring of characteristic not 2 and d be a derivation of M. If $Z(M) \neq (0)$ and d is SCP on M, then M is commutative.

Since we can use the similar techniques of Theorem 3.1, we can obtain the following theorems which partially generalize the result of Bell and Daif to prime Γ-rings.

Theorem 3.2. Let M be a prime Γ-ring of characteristic not 2 and U be a nonzero square closed Lie ideal of M. If $[d(x),d(y)]_\alpha = -[x,y]_\alpha$ for all $x,y \in U$ and $\alpha \in \Gamma$, then $U \subseteq Z(M)$ or $Z(M) = (0)$.

Proof. It can be proved easily by using the same method in Theorem 3.1. \[\square\]
Corollary 3.2. Let M be a prime Γ-ring of characteristic not 2 and d be a derivation of M. If $Z(M) \neq (0)$ and $[d(x), d(y)]_\alpha = -[x, y]_\alpha$ for all $x, y \in M$, $\alpha \in \Gamma$, then M is commutative.

Theorem 3.3. Let M be a prime Γ-ring of characteristic not 2 and U be a nonzero square closed Lie ideal of M. If d is a derivation of M such that $d(x) \circ_\alpha d(y) = x \circ_\alpha y$ for all $x, y \in U$ and $\alpha \in \Gamma$, then $U \subseteq Z(M)$ or $Z(M) = (0)$.

Proof. Suppose that $Z(M) \neq (0)$. By the hypothesis we obtain that

$$d(x) \circ_\alpha d(y) - x \circ_\alpha y = 0,$$

for all $x, y \in U$ and $\alpha \in \Gamma$. Replacing x by $2x\beta z$ for $z \in U$, $\beta \in \Gamma$ in the equation (11) we get

$$d(x)\beta[z, d(y)]_\alpha - [x, d(y)]_\alpha \beta d(z) + 2x\beta y\alpha z = 0,$$

since M is a Γ-ring of characteristic not 2. Taking $2z\gamma x$ for z in the equation (12) we have

$$d(x)\beta[z, d(y)]_\alpha \gamma x + d(x)\beta z\gamma[x, d(y)]_\alpha - [x, d(y)]_\alpha \beta d(z)\gamma x
- [x, d(y)]_\alpha \beta z\gamma d(x) + 2x\beta y\alpha z\gamma x = 0,$$

for all $x, y, z \in U$, $\alpha, \beta, \gamma \in \Gamma$. Multiplying the two sides of (12) by γx from the right hand side, we get

$$d(x)\beta[z, d(y)]_\alpha \gamma x - [x, d(y)]_\alpha \beta d(z)\gamma x + 2x\beta y\alpha z\gamma x = 0,$$

for all $x, y, z \in U$ and $\alpha, \beta, \gamma \in \Gamma$. If we compare (13) and (14), we have that

$$d(x)\beta z\gamma[x, d(y)]_\alpha - [x, d(y)]_\alpha \beta z\gamma d(x) = 0,$$

for all $x, y, z \in U$ and $\alpha, \beta, \gamma \in \Gamma$. Replacing z by $2z\sigma[x, d(y)]_\alpha$ for $y \in [U, U]_\Gamma$ and $\sigma \in \Gamma$ in the equation (15) we get

$$d(x)\beta z\sigma[x, d(y)]_\alpha \gamma[x, d(y)]_\alpha - [x, d(y)]_\alpha \beta z\sigma[x, d(y)]_\alpha \gamma d(x) = 0,$$

since M is a Γ-ring of characteristic not 2. Taking σ for γ in (15) we have

$$d(x)\beta z\sigma[x, d(y)]_\alpha = [x, d(y)]_\alpha \beta z\sigma d(x),$$

If we use the equation (17) in the equation (16) we get

$$[x, d(y)]_\alpha \beta z\sigma d(x)\gamma[x, d(y)]_\alpha = [x, d(y)]_\alpha \beta z\sigma[x, d(y)]_\alpha \gamma d(x)$$
and so

$$[x, d(y)]_\alpha \beta z\sigma[d(x), [x, d(y)]_\alpha]_\gamma = 0,$$
for all $x, z \in U$, $y \in [U, U]_\Gamma$ and $\alpha, \beta, \gamma, \sigma \in \Gamma$. Taking $\beta = \gamma$ in (18), we get

$$[x, d(y)]_\alpha \gamma z\sigma[d(x), [x, d(y)]_\alpha]_\gamma = 0,$$
for all $x, z \in U$, $y \in [U, U]_{\Gamma}$ and $\alpha, \gamma, \sigma \in \Gamma$. Multiplying the equation (19) on the left by $d(x)\gamma$ for $x \in [U, U]_{\Gamma}$, we have

\begin{equation}
(20) \quad d(x)\gamma[x, d(y)]_{\alpha}\gamma z \sigma d(x), [x, d(y)]_{\alpha} \gamma = 0.
\end{equation}

Taking $2d(x)\gamma z$ for z in (19) we obtain that

\begin{equation}
(21) \quad [x, d(y)]_{\alpha}\gamma d(x)\gamma z \sigma d(x), [x, d(y)]_{\alpha} \gamma = 0,
\end{equation}

for all $z \in U$, $x, y \in [U, U]_{\Gamma}$ and $\alpha, \gamma, \sigma \in \Gamma$ since M is a Γ-ring of characteristic not 2. Subtracting (21) from (20) we see that

\begin{equation}
[d(x), [x, d(y)]_{\alpha}]\gamma z \sigma d(x), [x, d(y)]_{\alpha} \gamma = 0,
\end{equation}

for all $z \in U$, $x, y \in [U, U]_{\Gamma}$ and $\alpha, \gamma, \sigma \in \Gamma$. Therefore, by Lemma 3.4 we have that

\begin{equation}
(22) \quad [d(x), [x, d(y)]_{\alpha}] \gamma = 0,
\end{equation}

for all $x, y \in [U, U]_{\Gamma}$ and $\alpha, \gamma \in \Gamma$. Replacing z by x for $x \in [U, U]_{\Gamma}$ and $\beta = \gamma$ in (12) and using the equation (22) we conclude that $x\Gamma[U, U]_{\Gamma} \Gamma x = (0)$ for all $x \in [U, U]_{\Gamma}$ since M is a Γ-ring of characteristic not 2. We know that $[U, U]_{\Gamma}$ is a nonzero square closed Lie ideal of M. So by using Lemma 3.4 we get either $x = 0$ for all $x \in [U, U]_{\Gamma}$ or $[U, U]_{\Gamma} \subseteq Z(M)$. The first case contradicts with the hypothesis $[U, U]_{\Gamma} \neq (0)$. Then we have that $[U, U]_{\Gamma} \subseteq Z(M)$. Hence, applying Lemma 3.6 we obtain that $U \subseteq Z(M)$. This completes the proof. \qed

Corollary 3.3. Let d be a derivation of a prime Γ-ring M of characteristic not 2. If $d(x) \circ_{\alpha} d(y) = x \circ_{\alpha} y$ for all $x, y \in M$, $\alpha \in \Gamma$ and $Z(M) \neq (0)$, then M is commutative.

Theorem 3.4. Let M be a prime Γ-ring of characteristic not 2 and U be a nonzero square closed Lie ideal of M. If d is a derivation of M such that $d(x) \circ_{\alpha} d(y) = -(x \circ_{\alpha} y)$ for all $x, y \in U$, $\alpha \in \Gamma$, then $U \subseteq Z(M)$ or $Z(M) = (0)$.

Proof. Suppose that $Z(M) \neq (0)$. By the hypothesis we have that

\begin{equation}
(23) \quad d(x) \circ_{\alpha} d(y) + x \circ_{\alpha} y = 0,
\end{equation}

for all $x, y \in U$ and $\alpha \in \Gamma$. Replacing x by $2x\beta z$ for $z \in U$, $\beta \in \Gamma$ in the equation (23) we get

\begin{equation}
(24) \quad d(x)\beta [z, d(y)]_{\alpha} - [x, d(y)]_{\alpha} \beta d(z) + 2x\beta z\alpha y = 0,
\end{equation}

since M is a Γ-ring of characteristic not 2. Taking $2z\gamma x$ for x in the equation (24) we have

\begin{equation}
(25) \quad d(z)\gamma x\beta [z, d(y)]_{\alpha} + z\gamma d(x)\beta [z, d(y)]_{\alpha} - [z, d(y)]_{\alpha} \gamma x\beta d(z) - z\gamma [x, d(y)]_{\alpha} \beta d(z) + 2z\gamma x\beta z\alpha y = 0.
\end{equation}

Multiplying the two sides of (24) by $z\gamma$ from the left hand side, we get

\begin{equation}
(26) \quad z\gamma d(x)\beta [z, d(y)]_{\alpha} - z\gamma [x, d(y)]_{\alpha} \beta d(z) + 2z\gamma x\beta z\alpha y = 0,
\end{equation}

This completes the proof.
for all $x, y, z \in U$ and $\alpha, \beta, \gamma \in \Gamma$. If we compare (25) and (26), we have that

$$d(z)\gamma x \beta[z, d(y)]_\alpha - [z, d(y)]_\alpha \gamma x \beta d(z) = 0,$$

for all $x, y, z \in U$ and $\alpha, \beta, \gamma \in \Gamma$. Replacing x by $2x\sigma[z, d(y)]_\alpha$ for $y \in [U, U]_\Gamma$ and $\sigma \in \Gamma$ in the equation (27) we get

$$d(z)\gamma x \sigma[z, d(y)]_\alpha \beta[z, d(y)]_\alpha - [z, d(y)]_\alpha \gamma x \sigma[z, d(y)]_\alpha \beta d(z) = 0,$$

since M is a Γ-ring of characteristic not 2. Taking σ for β in (27) we have

$$d(z)\gamma x \sigma[z, d(y)]_\alpha = [z, d(y)]_\alpha \gamma x \sigma d(z).$$

If we use the equation (29) in the equation (28) we get

$$[z, d(y)]_\alpha \gamma x \sigma d(z)\beta[z, d(y)]_\alpha = [z, d(y)]_\alpha \gamma x \sigma[z, d(y)]_\alpha \beta d(z)$$

and so

$$[z, d(y)]_\alpha \gamma x \sigma[d(z)], [z, d(y)]_\alpha \beta = 0,$$

for all $x, z \in U$, $y \in [U, U]_\Gamma$ and $\alpha, \beta, \gamma, \sigma \in \Gamma$. Taking $\beta = \gamma$ in (30), we get

$$[z, d(y)]_\alpha \gamma x \sigma[d(z)], [z, d(y)]_\alpha \gamma = 0,$$

for all $x, z \in U$, $y \in [U, U]_\Gamma$ and $\alpha, \gamma, \sigma \in \Gamma$. Multiplying the equation (31) on the left by $d(z)\gamma$ for $z \in [U, U]_\Gamma$, we have

$$d(z)\gamma[z, d(y)]_\alpha \gamma x \sigma[d(z)], [z, d(y)]_\alpha \gamma = 0.$$

Taking $2d(z)\gamma x$ for x in (31) we obtain that

$$[z, d(y)]_\alpha \gamma d(z)\gamma x \sigma[d(z)], [z, d(y)]_\alpha \gamma = 0,$$

for all $x \in U$, $y, z \in [U, U]_\Gamma$ and $\alpha, \gamma, \sigma \in \Gamma$ since M is a Γ-ring of characteristic not 2. Subtracting (33) from (32) we see that

$$[d(z), [z, d(y)]_\alpha \gamma x \sigma[d(z)], [z, d(y)]_\alpha \gamma = 0,$$

for all $x \in U$, $y, z \in [U, U]_\Gamma$ and $\alpha, \gamma, \sigma \in \Gamma$. Therefore, by Lemma 3.4 we have that

$$[d(z), [z, d(y)]_\alpha \gamma = 0,$$

for all $y, z \in [U, U]_\Gamma$ and $\alpha, \gamma \in \Gamma$. Then, the proof is completed by using the similar steps in the equation (22) in Theorem 3.3.

Corollary 3.4. Let d be a derivation of a prime Γ-ring M of characteristic not 2. If $d(x)\circ_\alpha d(y) = -(x \circ_\alpha y)$ for all $x, y \in M$, $\alpha \in \Gamma$ and $Z(M) \neq (0)$, then M is commutative.

Acknowledgement. This research was supported by Adnan Menderes University Research Fund. Project Number: FEF-18003.
Okan Arslan, Berna Arslan

References

Okan Arslan
Department of Mathematics
Adnan Menderes University
09010 Aydın
Turkey
E-mail address: oarslan@adu.edu.tr

Berna Arslan
Department of Mathematics
Adnan Menderes University
09010 Aydın
Turkey
E-mail address: byorganci@adu.edu.tr