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On relationships between q-product identities and
combinatorial partition identities

M.P. Chaudhary, Sangeeta Chaudhary, Sonajharia Minz

Abstract. Andrews et al. [2] discussed about the combinatorial parti-
tion identities. We aim to present some relationships between q-product
identities and combinatorial partition identities, by using and combining
known formulas.

1. Introduction and Preliminaries

Throughout this paper, N, Z, and C denote the sets of positive integers,
integers, and complex numbers, respectively, and N0 := N ∪ {0}. The fol-
lowing q-notations are recalled (see, e.g., [15, Chapter 6]): The q-shifted
factorial (a; q)n is defined by

(a; q)n :=


1, n = 0,

n−1∏
k=0

(1− aqk), n ∈ N,

where a, q ∈ C and it is assumed that a 6= q−m(m ∈ N0). We also write

(1) (a; q)∞ :=
∞∏
k=0

(1− aqk) =
∞∏
k=1

(1− aqk−1), (a, q ∈ C; |q| < 1).

It is noted that, when a 6= 0 and |q| ≥, the infinite product in (1) diverges.
So, whenever (a; q)∞ is involved in a given formula, the constraint |q| < 1
will be tacitly assumed.

The following notations are also frequently used:

(a1, a2, . . . , am; q)n := (a1; q)n(a2; q)n · · · (am; q)n
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and
(a1, a2, . . . , am; q)∞ := (a1; q)∞(a2; q)∞ · · · (am; q)∞.

Ramanujan defined the general theta function f(a, b) as follows (see, for
details, [3, p. 31, Eq. (18.1)] and [4], see also [13]):

(2)

f(a, b) = 1 +
∞∑
n=1

(ab)
n(n−1)

2 (an + bn)

=

∞∑
n=−∞

a
n(n+1)

2 b
n(n−1)

2 = f(b, a), (|ab| < 1).

We find from (2) that

f(a, b) = a
n(n+1)

2 b
n(n−1)

2 f(a(ab)n, b(ab)−n) = f(b, a), (n ∈ Z).

Ramanujan also rediscovered the Jacobi’s famous triple-product identity (see
[3, p. 35, Entry 19]):

(3) f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞,

which was first proved by Gauss.
Several q-series identities emerging from Jacobi’s triple-product identity

(3) are worthy of note here (see [3, pp. 36-37, Entry 22]):

(4)
φ(q) :=

∞∑
n=−∞

qn
2
= 1 + 2

∞∑
n=1

qn
2
=

= {(−q; q2)∞}2(q2; q2)∞ =
(−q; q2)∞(q2; q2)∞
(q; q2)∞(−q2; q2)∞

,

(5) ψ(q) := f(q, q3) =

∞∑
n=0

q
n(n+1)

2 =
(q2; q2)∞
(q; q2)∞

,

(6)

f(−q) := f(−q,−q2) =
∞∑

n=−∞
(−1)nq

n(3n−1)
2 =

=

∞∑
n=0

(−1)nq
n(3n−1)

2 +

∞∑
n=1

(−1)nq
n(3n+1)

2 = (q; q)∞.

Equation (6) is known as Euler’s Pentagonal Number Theorem. The follow-
ing q-series identity:

(−q; q)∞ =
1

(q; q2)∞
=

1

χ(−q)
provides the analytic equivalence of Euler’s famous theorem: The number of
partitions of a positive integer n into distinct parts is equal to the number
of partitions of n into odd parts.
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We also recall the Rogers-Ramanujan continued fraction of R(q):

(7)

R(q) := q
1
5
H(q)

G(q)
= q

1
5
f(−q,−q4)
f(−q2,−q3)

= q
1
5
(q; q5)∞(q4; q5)∞
(q2; q5)∞(q3; q5)∞

=

=
q

1
5

1 +
q

1 +
q2

1 +
q3

1 + · · ·

, (|q| < 1).

Here G(q) and H(q) are widely investigated Roger-Ramanujan identities
defined by

(8)
G(q) :=

∞∑
n=0

qn
2

(q; q)n
=

f(−q5)
f(−q,−q4)

=

=
1

(q; q5)∞(q4; q5)∞
=

(q2; q5)∞(q3; q5)∞(q5; q5)∞
(q; q)∞

; ,

(9)
H(q) :=

∞∑
n=0

qn(n+1)

(q; q)n
=

f(−q5)
f(−q2,−q3)

=

=
1

(q2; q5)∞(q3; q5)∞
=

(q; q5)∞(q4; q5)∞(q5; q5)∞
(q; q)∞

,

and the functions f(a, b) and f(−q) are given in (2) and (6), respectively. For
a detailed historical account of (and for various investigated developments
stemming from) the Rogers-Ramanujan continued fraction (7) and identities
(8) and (9), the interested reader may refer to the monumental work [3, p.
77 et seq.] (see also [13, 15]).

The following continued fraction was recalled in [14, p. 5, Eq. (2.8)] from
an earlier work cited therein: For |q| < 1,

(q2; q2)∞(−q; q)∞ =
(q2; q2)∞
(q; q2)∞

=

=
1

1−
q

1 +
q(1− q)

1−
q3

1 +
q2(1− q2)

1−
q5

1 +
q3(1− q3)
1− · · ·

,
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(q; q5)∞(q4; q5)∞
(q2; q5)∞(q3; q5)∞

=
1

1 +
q

1 +
q2

1 +
q3

1 +
q4

1 +
q5

1 +
q6

1 + · · ·

,

C(q) :=
(q2; q5)∞(q3; q5)∞
(q; q5)∞(q4; q5)∞

= 1 +
q

1 +
q2

1 +
q3

1 +
q4

1 +
q5

1 +
q6

1 + · · ·

.

Andrews et al. [2] investigated new double summation hypergeometric q-
series representations for several families of partitions and further explored
the role of double series in combinatorial partition identities by introducing
the following general family:

(10) R(s, t, l, u, v, w) :=

∞∑
n=0

qs(
n
2 )+tnr(l, u, v, w;n),

where

r(l, u, v, w : n) :=

[n
u
]∑

j=0

(−1)j quv(
j
2)+(w−ul)j

(q; q)n−uj(quv; quv)j
.

The following interesting special cases of (10) are recalled (see [2, p. 106,
Theorem 3], see also [13]):

(11) R(2, 1, 1, 1, 2, 2) = (−q; q2)∞,

(12) R(2, 2, 1, 1, 2, 2) = (−q2; q2)∞,

(13) R(m,m, 1, 1, 1, 2) =
(q2m; q2m)∞
(qm; q2m)∞

.

Here, we aim to present certain interrelations between q-product identities
and combinatorial partition identities associated with the identities (4)-(6)
and (11)-(13).



M.P. Chaudhary, Sangeeta Chaudhary, Sonajharia Minz 87

2. Sets of Preliminary Results

Here we recall the following results for the verification of the main results
in section 3 (see [1, Theorem 5.1; 3, Entry 51, p. 204; 12, Theorem 3.1]).

(14) If U =
φ4(−q)
φ4(−q3)

and V =
ψ4(q)

ψ4(q3)
, then U − UV = 9− V.

(15)
If M =

f2(−q)
q

1
6 f2(−q3)

and N =
f2(−q2)
q

1
3 f2(−q6)

,

then MN +
9

MN
=

(
N

M

)3

+

(
M

N

)3

.

(16) If U =
φ4(q)

φ4(q3)
, then

f4(q)f4(−q2)
qf4(q3)f4(−q6)

=
U(U − 9)

1− U
, U 6= 1.

3. The Main Results

Here we state and prove certain interesting interrelations among q-product
identities and combinatorial partition identities.

Theorem 3.1. Each of the following relations holds true:

(17)

(
9− 1

q

{
R(1, 1, 1, 1, 1, 2)

R(3, 3, 1, 1, 1, 2)

}4)
=

(
1− 1

q

{
R(1, 1, 1, 1, 1, 2)

R(3, 3, 1, 1, 1, 2)

}4)
×

× (q, q, q, q, q2, q2, q2, q2; q2)∞(−q3,−q3,−q3,−q3,−q6,−q6,−q6,−q6; q6)∞
{R(2, 1, 1, 1, 2, 2)R(2, 2, 1, 1, 2, 2)}4(q3, q3, q3, q3, q6, q6, q6, q6; q6)∞

,

(18)

(q, q, q2, q2, q2, q2; q2)∞

q
1
2 (q3, q3, q6, q6, q6, q6; q6)∞

+
9q

1
2 (q3, q3, q6, q6, q6, q6; q6)∞
(q, q, q2, q2, q2, q2; q2)∞

=

=
1

q
1
2

{
R(1, 1, 1, 1, 1, 2)R(12, 12, 1, 1, 1, 2)(q3; q6)∞(q6; q12)∞(q12; q24)∞

(q2; q2)∞(q6; q12)∞(q24; q24)∞

}6

+

+ q
1
2

{
R(2, 2, 1, 1, 1, 2)R(3, 3, 1, 1, 1, 2)(q; q2)∞(q2; q4)∞

(q4; q4)∞(q6; q6)∞

}6

,

(19)

(−q,−q,−q,−q;−q)∞(q2, q2, q2, q2; q2)∞
q.(−q3,−q3,−q3,−q3;−q3)∞(q6, q6, q6, q6; q6)∞

=

=
{R(2, 1, 1, 1, 2, 2).R(1, 1, 1, 1, 1, 2)(q3,−q6; q6)∞}4

{(−q3, q6; q6)∞}4
×

× {R(1, 1, 1, 1, 1, 2)R(2, 1, 1, 1, 2, 2)(q
3,−q6; q6)∞}4 − 9{R(2, 2, 1, 1, 1, 2)(−q3, q6; q6)}4

{R(2, 2, 1, 1, 2, 2)(−q3, q6; q6)∞}4
×

× {(−q3, q6; q6)∞}4

{R(2, 2, 1, 1, 1, 2)(−q3, q6; q6)∞}4 − {R(1, 1, 1, 1, 1, 2)R(2, 1, 1, 1, 2, 2)(q3, q6; q6)}4
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Proof. First of all we have to prove our first identity (17). Applying (4)-(5),
and further using (11)-(13), we get

(20)
U =

φ4(−q)
φ4(−q3)

=
(q, q, q, q, q2, q2, q2, q2; q2)∞

{R(2, 1, 1, 1, 2, 2)R(2, 2, 1, 1, 2, 2)}4
×

× (−q3,−q3,−q3,−q3,−q6,−q6,−q6,−q6;−q6)∞
(q3, q3, q3, q3, q6, q6, q6, q6; q6)∞

and

(21) V =
ψ4(q)

q ψ4(q3)
=

1

q

{
R(1, 1, 1, 1, 1, 2)

R(3, 3, 1, 1, 1, 2)

}4

,

(22)
UV =

(q, q, q, q, q2, q2, q2, q2; q2)∞{R(1, 1, 1, 1, 1, 2)}4

{R(2, 1, 1, 1, 2, 2)R(2, 2, 1, 1, 2, 2)}4
×

× (−q3,−q3,−q3,−q3,−q6,−q6,−q6,−q6;−q6)∞
q.(q3, q3, q3, q3, q6, q6, q6, q6; q6)∞{R(3, 3, 1, 1, 1, 2)}4

,

(23)

U − UV =

(
1− 1

q

{
R(1, 1, 1, 1, 1, 2)

R(3, 3, 1, 1, 1, 2)

}4)
×

× (q, q, q, q, q2, q2, q2, q2; q2)∞
{R(2, 1, 1, 1, 2, 2)R(2, 2, 1, 1, 2, 2)}4

×

× (−q3,−q3,−q3,−q3,−q6,−q6,−q6,−q6;−q6)∞
(q3, q3, q3, q3, q6, q6, q6, q6; q6)∞

,

using (20)-(23) into (14), we obtain required identity (17).
Further, we have to attempt to estabilish our second identity (18). Ap-

plying (6), we obtain:

(24) M =
f2(−q)

q
1
6 f2(−q3)

=
{(q; q)∞}2

q
1
6 {(q3; q3)∞}2

and

(25) N =
f2(−q2)
q

1
3 f2(−q6)

=
{(q2; q2)∞}2

q
1
3 {(q6; q6)∞}2

with (24)-(25), and using (11)-(13), we have following identities

(26) MN =
(q, q, q2, q2, q2, q2; q2)∞

q
1
2 (q3, q3, q6, q6, q6, q6; q6)∞

and

(27)
9

MN
=

9q
1
2 (q3, q3, q6, q6, q6, q6; q6)∞
(q, q, q2, q2, q2, q2; q2)∞

.
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Combining (26) and (27) we get

(28) MN +
9

MN
=

(q, q, q2, q2, q2, q2; q2)∞

q
1
2 (q3, q3, q6, q6, q6, q6; q6)∞

+
9q

1
2 (q3, q3, q6, q6, q6, q6; q6)∞

q
1
2 (q, q, q2, q2, q2, q2; q2)∞

.

Also, we have

(29)

M

N
= q

1
6

{
(q; q2)∞(q6; q6)∞(q2; q2)∞
(q2; q2)∞(q3; q6)∞(q6; q6)∞

}2

=

= q
1
6

{
R(2, 2, 1, 1, 1, 2)R(3, 3, 1, 1, 1, 2)(q; q2)∞(q2; q4)∞

(q4; q4)∞(q6; q6)∞

}2

Similarly,

(30) N

M
=

1

q
1
6

{
R(1, 1, 1, 1, 1, 2)R(12, 12, 1, 1, 1, 2)(q3; q6)∞(q6; q12)∞(q12; q24)∞

(q2; q2)∞(q6; q12)∞(q24; q24)∞

}2

.

Combining (29) and (30), we get

(31)

(
N

M

)3

+

(
M

N

)3

=

=
1

q
1
2

{
R(1, 1, 1, 1, 1, 2)R(12, 12, 1, 1, 1, 2)(q3; q6)∞(q6; q12)∞(q12; q24)∞

(q2; q2)∞(q6; q12)∞(q24; q24)∞

}6

+

+ q
1
2

{
R(2, 2, 1, 1, 1, 2)R(3, 3, 1, 1, 1, 2)(q; q2)∞(q2; q4)∞

(q4; q4)∞(q6; q6)∞

}6

,

equating (28) and (31), as precondition given in (15), we obtain the required
identity (18).

Finally, we have to prove our third identity (19). In order to establish
this identity, using(4) and (6), and further applying (11)-(13), we get

U =

{
R(2, 1, 1, 1, 2, 2)R(1, 1, 1, 1, 1, 2)(q3,−q6; q6)∞

R(2, 2, 1, 1, 2, 2)(−q3, q6; q6)∞

}4

,

from which it follows

(32)

⇒ U2 − 9U

1− U
=

{R(2, 1, 1, 1, 2, 2)R(1, 1, 1, 1, 1, 2)(q3,−q6; q6)∞}4

{(−q3, q6; q6)∞}4
×

× {R(1, 1, 1, 1, 1, 2)R(2, 1, 1, 1, 2, 2)(q
3,−q6; q6)∞}4 − 9{R(2, 2, 1, 1, 1, 2)(−q3, q6; q6)}4

{R(2, 2, 1, 1, 2, 2)(−q3, q6; q6)∞}4
×

× {(−q3, q6; q6)∞}4

{R(2, 2, 1, 1, 1, 2)(−q3, q6; q6)∞}4 − {R(1, 1, 1, 1, 1, 2)R(2, 1, 1, 1, 2, 2)(q3,−q6; q6)}4
.

Similarly, holds

(33)
f4(q)f4(−q2)
qf4(q3)f4(−q6)

=
(−q,−q,−q,−q;−q)∞(q2, q2, q2, q2; q2)∞

q.(−q3,−q3,−q3,−q3;−q3)∞(q6, q6, q6, q6; q6)∞
,

equating (32) and (33), using in (16), we obtain (19). Hence, we complete
proof of our theorem. �
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4. Concluding Remarks and Observations

The present investigation was motivated by several recent developments
dealing essentially with q-product identities and combinatorial partition
identities. Here, in this article, we have established three presumably new
inter-relationships that exist among q-product identities and combinatorial
partition identities. We have also considered several closely-related identi-
ties such as (for example) q-product identities and Jacobi’s triple-product
identities. We have chosen to indicate rather briefly a number of recent
developments on the subject-matter of this article.

The list of citations, which we have included in this article, is believed
to be potentially useful for indicating some of the directions for further
researches and related developments on the subject-matter which we have
dealt with here, and in particular, the recent works by Chaudhary et al. (see
[11, 5, 8, 9, 7, 6, 10]).
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