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A Study on lung cancer using nabla
discrete fractional-order model

David Amilo, Bilgen Kaymakamzade, Evren Hınçal

Abstract. This study proposes a nabla discrete fractional-order sys-
tem of differential equations to model lung cancer and its interactions
with lung epithelial cells, mutated cells, oncogenes, tumor suppres-
sor genes, immune cells, cytokines, growth factors, angiogenic factors,
and extracellular matrix. The proposed model can help predict cancer
growth, metastasis, and response to treatment. Analytical results show
the system is stable with a unique solution, and the model predicts
that the immune system responds to cancer cells but eventually be-
comes overpowered. The numerical analysis employed the forward and
backward Euler method and demonstrated that changes in parameter
values have significant effects on the steady-state solution. The findings
show that the growth of lung epithelial cells or their interaction with
immune cells can cause an increase in the number of lung cancer cells.
Conversely, an increase in cell death or a reduction in the interaction
between lung epithelial cells and immune cells can decrease the number
of lung cancer cells. The study highlights the usefulness of the nabla
discrete fractional model in studying lung cancer dynamics.

1. Statement of Significance

The study is a substantial addition to the field of cancer research. The re-
search proposes a mathematical model that employs nabla discrete fractional-
order differential equations to simulate the intricate interactions among lung
epithelial cells, mutated cells, oncogenes, tumor suppressor genes, immune
cells, cytokines, growth factors, angiogenic factors, and extracellular matrix
in lung cancer. This approach facilitates a more precise and comprehensive
comprehension of lung cancer dynamics, which can potentially predict cancer
growth, metastasis, and response to treatment. The analytical results of the
study manifest that the proposed model is stable and presents a unique solu-
tion. The model also predicts that the immune system initially responds to
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cancer cells, but eventually becomes overwhelmed, thus providing valuable
insights into the immune system’s function in lung cancer progression. The
numerical analysis performed in the study reveals the significant influence
of parameter values on the steady-state solution. The findings of the study
disclose that changes in the interactions between lung epithelial cells and
immune cells or variations in cell death can have a significant impact on the
quantity of lung cancer cells. This emphasizes the importance of a profound
understanding of the complicated dynamics of lung cancer to create more
effective treatment plans. In summary, this study’s notable contribution
to the field of cancer research highlights the practicality of nabla discrete
fractional-order models in comprehending lung cancer dynamics. The sug-
gested model holds the potential to improve the accuracy of lung cancer
diagnosis and treatment, and ultimately, enhance patient outcomes.

2. Introduction

Lung cancer is one of the most common cancers worldwide and is respon-
sible for a significant proportion of cancer-related deaths [1]. The disease
arises when the normal functioning of lung cells is disrupted due to the
accumulation of genetic mutations that result in uncontrolled cell growth
and division. Lung cancer is known to be influenced by a range of fac-
tors, including exposure to environmental pollutants, smoking, and genetic
predisposition [2]. Despite the advancements in cancer research, the devel-
opment of effective treatments for lung cancer remains a challenge due to
the complexity of the disease [3].

Combining PD-L1 monoclonal antibody treatment with surgery is a promis-
ing approach for the treatment of lung cancer [4]. PD-L1 monoclonal an-
tibodies are a class of drugs that target the PD-1/PD-L1 checkpoint path-
way, which is involved in regulating the immune response [5]. These drugs
block the interaction between PD-L1 on cancer cells and programmed cell
death-1(PD-1) on T cells, thus restoring the ability of the immune system to
recognize and attack cancer cells [6]. Immunotherapy is quite promising but
is not completely effective as it could cause immune-related adverse events
(irAEs), including endocrine adverse events (eAEs), especially when admin-
istered for long [7,8]. Surgery, on the other hand, is a common treatment for
lung cancer that involves the removal of the tumor and surrounding tissue.
Surgery is typically used for early-stage lung cancer and can be curative if
all the cancer cells are removed [9]. However, surgery alone may not be
effective in cases where the cancer has spread to other parts of the body.
Combining these therapies may improve the success rates while reducing the
adverse effects [10].

Mathematical models have been increasingly used in cancer research as a
means of understanding the dynamics of cancer growth and the interactions
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between cancer cells, immune cells, and other components of the tumor mi-
croenvironment [11, 12]. Fractional calculus, which deals with derivatives
and integrals of non-integer order, has been shown to be a powerful tool for
modeling complex systems [13, 14]. The fractional order differential equa-
tions have been used in various applications including biomedical engineer-
ing, economics, and control theory [15–17]. Both continuous and discrete
fractional-order models have been employed in the study of cancer [18–21],
but discrete fractional models are arguably superior in capturing the tumor
growth dynamics [22–24]. Discrete models can better account for the natural
time delays and discrete nature of cell proliferation and death, and they are
better suited for simulating the discrete nature of data collection [25–27].
Additionally, discrete models have the potential to be more computationally
efficient and easier to implement than continuous models [28–31]. There-
fore, the use of discrete fractional models in cancer modeling can potentially
lead to a better understanding of tumor growth dynamics and improved
treatment strategies.

In the last decade, there has been a growing interest in the use of frac-
tional calculus for modeling cancer growth. Several mathematical models
have been developed to describe the growth and spread of cancer [34]. The
Caputo derivative is commonly used in fractional calculus to describe the
dynamics of cancer growth and the response to treatment. For example,
in a study by authors in [35–37], a fractional order model was developed
to investigate the effects of chemotherapy on the growth of cancer cells.
The model considered the interactions between cancer cells, chemotherapy
drugs, and immune cells. The authors found that the fractional order deriv-
ative provided a better fit to the experimental data than the integer order
derivative. Also, a fractional order model in [38, 39] was used to describe
the growth of breast cancer cells under the influence of immune cells. The
model considered the interactions between cancer cells, immune cells, and
chemotherapy drugs. The authors found that the fractional order deriva-
tive provided a more accurate description of the dynamics of cancer growth
than the integer order derivative.The authors of [32] studied the representa-
tion of a pharmacokinetics-pharmacodynamics (PK-PD) model describing
tumor growth and anti-cancer effects in discrete time. They used a frac-
tional difference equation to model the system and developed a method to
estimate parameters using the partial sum method. Authors of [33] stud-
ied a three-dimensional discrete-time model to investigate the interaction
between normal host cells, functional immune cells, and tumor cells. They
performed a fixed point analysis to study the stability of the system and
the sensitivity of the initial cell population. Other researchers have used
fractional order models to investigate the effect of various factors on cancer
growth such as the effects of hypoxia, the effects of radiotherapy, and the
effects of anti-angiogenic therapy [40–42].
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In this study, we propose a nabla discrete fractional-order system of dif-
ferential equations, as shown in Figure 1, with parameters and variables
described in Table 1. The model captures the interactions between lung
epithelial cells, mutated cells, oncogenes, tumor suppressor genes, immune
cells, cytokines, growth factors, angiogenic factors, and extracellular matrix
in lung cancer. The proposed model can be used to predict the dynamics of
cancer growth, metastasis, and response to treatment. The fractional order
model presented in this research captures the complex interactions between
cancer cells, immune cells, and other components of the tumor microenvi-
ronment, which could help in the prognosis of the disease and could facilitate
the development of more effective treatment strategies.

3. Preliminaries

Definition 1 (Fractional Nabla difference operator [43]). The fractional
Nabla difference operator of order α with respect to the discretization step
h, denoted as ∇α

h , is defined as:

∇α
hf(n) =

1

hα

n−1∑
k=0

(−1)k
(
n− 1

k

)
f(n− k − 1),

where α is a non-negative real number and f(n) is a discrete function defined
at integer points.

Definition 2 (Nabla Laplace transform operator [44]). The Laplace trans-
form operator of a fractional nabla difference operator ∇α

h is defined as:

L∇α
hf(n) =

∞∑
n=0

e−snh∇α
hf(n) = (1− e−sh)αLf(n),

where s is the complex frequency parameter and f(n) is a discrete function
defined at integer points.

Definition 3 (Banach contraction principle [45]). Let (X, d) be a metric
space, and let T : X → X be a function. Then T is a Banach contraction if
there exists a constant 0 ≤ k < 1 such that for all x, y ∈ X,

d(T (x), T (y)) ≤ k, d(x, y).

4. Model formation

The Nabla discrete fractional order system for lung cancer that captures
the interactions between lung epithelial cells, mutated cells, oncogenes, tu-
mor suppressor genes, immune cells, cytokines, growth factors, angiogenic
factors and extracellular matrix, shown in Figure 1 is given as:
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Figure 1. Schematic diagram of the discrete fractional lung
cancer model.

Symbol Description

Nk Number of Lung epithelial cells

Pk Number of Mutated cells

Ik Number of Immune cells

K Carrying capacity

λk Growth rate of Lung epithelial cells

µk Rate of cell death due to Mutated cells

β1,k Rate of interaction between Lung epithelial cells and Immune cells

ϕ1,k Initial number of Immune cells

ϕ2,k Rate of production of Immune cells

ϕ3,k Rate of cell death of Immune cells

β2,k Rate of interaction between Immune cells and Mutated cells

γk Rate of spread of Mutated cells

δk Rate of cell death of Mutated cells

β3,k Rate of interaction between Immune cells and Mutated cells

fN,k External influences on Lung epithelial cells

fI,k External influences on Immune cells

fP,k External influences on Mutated cells

Table 1. Summary of variables and parameters.

(1)

∇α
hNk = λkNk

(
1− Nk

K

)
− µkNkPk − β1,kNkIk + fN,k

∇β1,k

h Ik = ϕ1,kI0 + ϕ2,kN
2
k − ϕ3,kIk − β2,kIkPk + fI,k

∇β2,k

h Pk = γkNkPk − δkPk − β3,kIkPk + fP,k,
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where Nk represents the number of Lung epithelial cells at time step k; Pk

represents the number of Mutated cells that have spread to other parts of
the body at time step k; Ik represents the number of Immune cells in the
lung tissue at time step k; K is the carrying capacity of the tissue; λk is the
growth rate of the Lung epithelial cells; µk is the rate of cell death due to
the presence of Mutated cells; β1,k is the rate of interaction between Lung
epithelial cells and Immune cells; ϕ1,k is the initial number of Immune cells in
the tissue; ϕ2,k is the rate of production of Immune cells due to the presence
of Lung epithelial cells; ϕ3,k is the rate of cell death of Immune cells; β2,k
is the rate of interaction between Immune cells and Mutated cells; γk is the
rate of spread of Mutated cells to other parts of the body; δk is the rate of
cell death of Mutated cells; β3,k is the rate of interaction between Immune
cells and Mutated cells; fN,k, fI,k and fP,k represent external influences such
as Cytokines, Growth factors, Angiogenic factors and Extracellular matrix
on Lung epithelial cells, Immune cells and Mutated cells, respectively, at
time step k.

5. Model analysis

5.1. Existence and uniqueness of solution.

Theorem 1. The solution to system (1) exists and is unique.

Proof. To prove existence and uniqueness of solutions of the system, we will
use the Banach fixed-point theorem. We will define an operator that maps
a function to itself and show that it has a unique fixed point, which is the
solution to the system.

Let X be the set of all bounded functions from Z to R3. For u ∈ X, define
the operator T (u) as follows:

(2)

(T (u))1(k) = u1(k) + hα
[
λku1(k)(1−

u1(k)

K
)− µku1(k)u3(k)

− β1,ku1(k)u2(k) + fN,k

]
(T (u))2(k) = u2(k) + hβ1,k

[
ϕ1,kI0 + ϕ2,ku1(k)

2 − ϕ3,ku2(k)

− β2,ku2(k)u3(k) + fI,k

]
(T (u))3(k) = u3(k) + hβ2,k

[
γku1(k)u3(k)− δku3(k)

− β3,ku2(k)u3(k) + fP,k

]
.

We will show that T maps X to itself and is a contraction, implying the
existence and uniqueness of a fixed point, which is the solution to the system.
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First, we will show that T (u) is bounded for any bounded u ∈ X. Let
M = max(|u1|∞, |u2|∞, |u3|∞). Then, for any k ∈ Z,

(3)

|(T (u))1(k)| ≤ |u1(k)|+ hα
∣∣∣λku1(k)(1−

u1(k)

K
)
∣∣∣

+ hα|µku1(k)u3(k)|+ hα|β1,ku1(k)u2(k)|+ |fN,k|
≤ M

(
1 + hα|λk|+ hα|µk|+ hα|β1,k|

)
+ |fN,k|

|(T (u))2(k)| ≤ |u2(k)|+ hβ1,k|ϕ1,kI0|+ hβ1,k |ϕ2,ku1(k)
2|

+ hβ1,k |ϕ3,ku2(k)|+ hβ1,k |β2,ku2(k)u3(k)|+ |fI,k|

≤ M
(
1 + hβ1,k |ϕ2,k|+ hβ1,k |β2,k|

)
+ hβ1,k |ϕ1,kI0|+ hβ1,k |ϕ3,k|+ |fI,k|

|(T (u))3(k)| ≤ |u3(k)|+ hβ2,k|γku1(k)u3(k)|+ hβ2,k|δku3(k)|

+ hβ2,k|β3,ku2(k)u3(k)|+ |fP,k|

≤ M
(
1 + hβ2,k |γk|+ hβ2,k |δk|+ hβ2,k |β3,k|

)
+ |fP,k|.

Thus, T (u) is bounded by M ′(1+ |hαλ|+ |hαµ|+ |hαβ1|+ |fN |+ |hβ1ϕ2|+
|hβ1β2|+ |ϕ1I0|+ |ϕ3|+ |fI |+ |hβ2γ|+ |hβ2δ|+ |hβ2β3|+ |fP |), where M ′ is
a constant greater than or equal to M .

Next, we will show that T is a contraction. Let u, v ∈ X. Then,
|T (u)− T (v)|∞ = max

k

{
|(T (u))1(k)− (T (v))1(k)|,

|(T (u))2(k)− (T (v))2(k)|,
|(T (u))3(k)− (T (v))3(k)|}

≤ hαmax
k

|λk|, |µk|, |β1, k||u1(k)− v1(k)|

+ hβ1,k max
k

|ϕ2,k|, |β2,k||u2(k)− v2(k)|

+ hβ2,k max
k

|γk|, |δk|, |β3,k||u3(k)− v3(k)|

≤ L max
i=1,2,3

|ui − vi|,

where,

L = max
k

{
hαmax

k

{
|λk|, |µk|, |β1,k|}, hβ1,k max

k
{|ϕ2,k|,

|β2,k|}, hβ2,k max
k

{|γk|, |δk|, |β3,k|
}}

.

0 < L < 1 by definition. Thus, T is a contraction, and by the Banach
fixed-point theorem, there exists a unique fixed point u∗ of T . This fixed
point is the solution to the system of difference equations. □

5.2. Stability analysis.

Theorem 2. System (1) is Locally Asymptotically Stable.
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Proof. Let (N∗
k , I

∗
k , P

∗
k ) be an equilibrium point of the system, i.e.,

∇α
hNk = ∇β1,k

h I∗k = ∇β2,k

h P ∗
k = 0.

Then, we can write the system as:

(4)

∇α
hNk = λkN

∗
k

(
1− Nk

K

)
− µkN

∗
kP

∗
k − β1,kN

∗
k I

∗
k + fN,k

∇β1,k

h Ik = ϕ1,kI
∗
0 + ϕ2,k(N

∗
k )

2 − ϕ3,kI
∗
k − β2,kI

∗
kP

∗
k + fI,k

∇β2,k

h Pk = γkN
∗
kP

∗
k − δkP

∗
k − β3,kI

∗
kP

∗
k + fP,k.

We can linearize this system around the equilibrium point (N∗
k , I

∗
k , P

∗
k ) to

get:

(5)

∇α
h∆Nk = −λkN

∗
k

∆Nk

K
− µkN

∗
k∆Pk − β1,kN

∗
k∆Ik

∇β1,k

h ∆Ik = ϕ2,k2N
∗
k∆Nk − ϕ3,k∆Ik − β2,k∆IkP

∗
k

∇β2,k

h ∆Pk = γkN
∗
k∆Pk − δk∆Pk − β3,k∆IkP

∗
k ,

where ∆Nk = Nk −Nk, ∆Ik = Ik − Ik, and ∆Pk = Pk − P ∗
k .

For matrix representation of this linear system, the characteristic equation
is:

det(A− λI) = det

∇α
h − λ 0 −β1,kN

∗
k

ϕ2,k2N
∗
k −ϕ3,k − λ −β2,kP

∗
k

γkN
∗
k −β3,kI

∗
k −δk − λ


= −λ3 − (ϕ3,k + δk +∇α

h)λ
2

+
(
β2,kP

γ
k kN

+
k β1,kN

ϕ
k 3,k − β3,kI

µ
k kN

∗
k + β1,kN

∗
k δk

)
λ

+ (β1,kβ2,kP
N
k

γ
kk − β1,kβ3,kI

N
k

µ
kk)

− ϕ2
2,kN

∗2
k (ϕ3,k + δk +∇α

h)

We will use the Routh-Hurwitz stability criterion to show that all the
eigenvalues of the system are negative. For this, we will construct the Routh
array for the characteristic equation.
s3 1 (ϕ3,k + δk +∇α

h) 0

s2 (β2,kP
γ
k kN

∗
k + β1,kN

ϕ
k 3,k − β3,kI

µ
k kN

∗
k + β1,kN

δ
k k) −ϕ2

2,kN
2
k (ϕ3,k + δk +∇α

h) 0

s1
(β1,kβ2,kP

N
k

γ
kk−β1,kβ3,kI

N
k

µ
kk)(ϕ3,k+δk+∇α

h)−(β2,kP
γ
k kN

∗
k+β1,kN

ϕ
k 3,k−β3,kI

µ
k kN

∗
k+β1,kN

∗
k δk)

2

ϕ2
2,kN

∗2
k (ϕ3,k+δk+∇α

h)
0 0

s0 (β1,kβ2,kP
N
k

γ
kk − β1,kβ3,kI

N
k

µ
kk) 0 0

For the system to be stable, all the elements in the first column of the Routh
array must be positive. We can see that all the elements in the first column
are positive since ϕ2

2,k, N
∗2
k , ϕ3,k + δk +∇α

h > 0 and all the rate constants
are positive. Therefore, the system is stable and all the eigenvalues are
negative. □

Theorem 3. The system (1) is globally asymptotically stable.
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Proof. Let (N∗
k , I

∗
k , P

∗
k ) be an equilibrium point of the system, i.e.,

∇α
hN

∗
k = ∇β1,k

h I∗k = ∇β2,k

h P ∗
k = 0.

We know from Theorem 2 that this equilibrium point is locally asymptoti-
cally stable.

We will now show that the system is also globally asymptotically stable,
which means that all solutions of the system converge to the equilibrium
point (N∗

k , I
∗
k , P

∗
k ) as t → ∞, regardless of the initial conditions.

First, note that the system is a discrete fractional-order system, which
means that it is a combination of a discrete-time system and a fractional-
order system. We can use the concept of discretization to convert the frac-
tional order differential equations into discrete-time difference equations,
which we can then solve numerically using standard numerical methods.

Suppose we have a numerical solution (N
(m)
k , I

(m)
k , P

(m)
k ) that starts at

some initial condition (N
(0)
k , I

(0)
k , P

(0)
k ) and evolves over m discrete time

steps. We can write the solution at the (m+ 1)-the time step as:

N
(m+1)
k = N

(m)
k + hα∆

(m)
N ,

I
(m+1)
k = I

(m)
k + hβ1,k∆

(m)
I ,

P
(m+1)
k = P

(m)
k + hβ2,k∆

(m)
P ,

where h is the time step, ∆(m)
N = ∇α

hN
(m)
k , ∆(m)

I = ∇β1,k

h I
(m)
k , and ∆

(m)
P =

∇β2,k

h P
(m)
k .

Let ϵ > 0 be a small positive number. We want to show that there exists
a positive integer M such that if m ≥ M , then

|N (m)
k −N∗

k | < ϵ, |I(m)
k − I∗k | < ϵ, |P (m)

k − P ∗
k | < ϵ,

where (N∗
k , I

∗
k , P

∗
k ) is the equilibrium point.

Suppose (N
(0)
k , I

(0)
k , P

(0)
k ) is an initial condition that is ϵ-close to the equi-

librium point, i.e.,

|N (0)
k −N∗

k | < ϵ, |I(0)k − I∗k | < ϵ, |P (0)
k − P ∗

k | < ϵ.

We will show that there exists a positive integer M such that if m ≥ M ,
then

|N (m)
k −N∗

k | < ϵ, |I(m)
k − I∗k | < ϵ, |P (m)

k − P ∗
k | < ϵ.

Since (N∗
k , I

∗
k , P

∗
k ) is an equilibrium point of the system, we have ∆

(m)
N =

∇α
hN

(m)
k = 0, ∆(m)

I = ∇β1,k

h I
(m)
k = 0, and ∆

(m)
P = ∇β2,k

h P
(m)
k = 0 for all m.

Therefore, the numerical solution (N
(m)
k , I

(m)
k , P

(m)
k ) satisfies the following
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recurrence relation:
N

(m+1)
k = N

(m)
k

I
(m+1)
k = I

(m)
k

P
(m+1)
k = P

(m)
k ,

This means that the numerical solution is constant after the equilibrium
point is reached, and hence converges to the equilibrium point. Since the
initial condition is ϵ-close to the equilibrium point, there exists a positive
integer M such that if m ≥ M , then

|N (m)
k −N∗

k | < ϵ, |I(m)
k − I∗k | < ϵ, |P (m)

k − P ∗
k | < ϵ.

Therefore, the system is globally asymptotically stable.
This completes the proof. □

5.3. Analytic solution: To solve system (1) analytically, we need to find
the solution for each equation. We start with the first equation:

∇α
hNk = λkNk

(
1− Nk

K

)
− µkNkPk − β1,kNkIk + fN,k.

To find the solution, we first assume that Nk, when k goes to infinity,
converges to a constant value N∞. This is a reasonable assumption because
the system has a finite carrying capacity K, which means that the population
of Lung epithelial cells will eventually reach a stable equilibrium.

Taking the Laplace transform of both sides of the equation with respect
to k, we get:

L∇α
hNk = LλkNk

(
1− Nk

K

)
− µkNkPk − β1,kNkIk + fN,k.

Using the properties of the Laplace transform, we have:

sαN (s)−sα−1N0 = λN (s)
(
K(s)−N (s)

K

)
−µN (s)P(s)−β1N (s)I(s)+FN (s),

where N (s) is the Laplace transform of Nk, K(s) is the Laplace transform
of 1− Nk

K , N0 is the initial value of Nk, and s is the Laplace variable.
Solving for N (s), we get:

N (s) =
sα−1N0 + β1I(s)N (s) + µP(s)N (s) + FN (s)

sα + λ(K(s)− N (s)
K )

.

Next, we move on to the second equation:

∇β1,k

h Ik = ϕ1,kI0 + ϕ2,kN
2
k − ϕ3,kIk − β2,kIkPk + fI,k.

Similar to the first equation, we assume that Ik converges to a constant
value I∞ when k goes to infinity. Taking the Laplace transform of both sides
of the equation, we have:

L∇β1,k

h Ik = Lϕ1,kI0 + ϕ2,kN
2
k − ϕ3,kIk − β2,kIkPk + fI,k.
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Using the properties of the Laplace transform and the assumption that
Ik converges to I∞ as k goes to infinity, we get:

sβ1I(s)− sβ1−1I0 = ϕ1I0 + ϕ2N (s)2 − ϕ3I(s)− β2I(s)P(s) + FI(s),

where I(s) is the Laplace transform of Ik, ϕ1, ϕ2, and ϕ3 are constants, and
FI(s) is the Laplace transform of fI, k.

Solving for I(s), we get:

I(s) = sβ1−1I0 + β2I(s)P(s) + ϕ2N (s)2 + FI(s)

sβ1 + ϕ3 + ϕ1
.

Finally, we move on to the third equation:

∇β2,k

h Pk = γkNkPk − δkPk − β3,kIkPk + fP,k.

Again, we assume that Pk converges to a constant value P∞ as k goes
to infinity. Taking the Laplace transform of both sides of the equation, we
have:

L∇β2,k

h Pk = LγkNkPk − δkPk − β3,kIkPk + fP,k.

Using the properties of the Laplace transform and the assumption that
Pk converges to P∞ as k goes to infinity, we get:

sβ2P(s)− sβ2−1P0 = γN (s)P(s)P0 − δP(s)− β3I(s)P(s) + FP (s),

where P(s) is the Laplace transform of Pk, γ, δ, and β3 are constants, and
FP (s) is the Laplace transform of fP, k.

Solving for P(s), we get:

P(s) =
sβ2−1P0 + γN (s)P(s)P0 + FP (s)

sβ2 + δ + β3I(s)
.

We now have three equations for the Laplace transforms of Nk, Ik, and
Pk, respectively. We can use these equations to solve for N (s), I(s), and
P(s) in terms of the Laplace transform of the input F (s):

N (s) =
F (s)

s+ α
.

I(s) = sβ1−1I0 + β2P(s)I(s) + ϕ2N (s)2 + FI(s)

sβ1 + ϕ3 + ϕ1
.

(6) P(s) =
sβ2−1P0 + γN (s)P(s)P0 + FP (s)

sβ2 + δ + β3I(s)
.

We can then take the inverse Laplace transform of N (s), I(s), and P(s)
to obtain Nk, Ik, and Pk as functions of time.

N (s) =
1

s+ µ

I(s) = sβ1−1I0 + β2I(s)P(s) + ϕ2N (s)2 + FI(s)

sβ1 + ϕ3 + ϕ1
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P(s) =
sβ2−1P0 + γN (s)P(s)P0 − δP(s)− β3I(s)P(s) + FP (s)

sβ2
.

We can use partial fraction decomposition and inverse Laplace transform
tables to find the inverse Laplace transform of each term. The details of the
calculations are omitted here for brevity, but the final expressions for Nk,
Ik, and Pk are:

(7)

Nk = µ+
N0 − µ

eµtk

Ik =
(β2P∞ + ϕ2µ

2)eβ1µtk

(β2P∞ + ϕ2µ2)eβ1µtk + (β2P∞ + ϕ2µ2 − I0)ϕ1 − ϕ2N2
0 + L−1FI(s)

Pk =
δβ3I∞e(β2γ−δ)tk

γδ(β3 + δ) + γβ2P∞ − β3δI∞ + γβ3P∞I∞ − β2δI∞P∞ + L−1FP (s)
,

where N0 is the initial value of Nk, tk is the time step, and I∞ and P∞ are
the limiting values of Ik and Pk, respectively, as k goes to infinity.

6. Numerical analysis

To solve system (1), we will use the forward Euler method for numerical
integration. The discrete time steps are given by tk = kh, and the solution
at time step k is denoted by yk. The update equations for each variable are:

(8)

Nk+1 = Nk + hα
(
λkNk

(
1− Nk

K

)
− µkNkPk − β1,kNkIk + fN,k

)
Ik+1 = Ik + hβ1,k

(
ϕ1,kI0 + ϕ2,kN

2
k − ϕ3,kIk − β2,kIkPk + fI,k

)
Pk+1 = Pk + hβ2,k (γkNkPk − δkPk − β3,kIkPk + fP,k) .

6.1. Sensitivity analysis. The sensitivity analysis is carried out using the
Backward Euler method.

We vary the parameter values for all three equations simultaneously,
choosing five different values for each parameter: 0.1, 0.2, 0.3, 0.4, and
0.5. The system is then solved using the Backward Euler method for each
set of parameter values and the steady-state solution is observed.

The formula for applying the Backward Euler method to a system of
equations is:

yn = yn− 1 + hf(tn,yn), n = 1, 2, . . . ,

where yn is the vector of unknowns at time step n, f(tn,yn) is the vector of
derivatives at time step n, and h is the time step size. In the case of the lung
cancer model, the vector of unknowns is uk = [Nk, Ik, Pk] for each cell type
k, and the vector of derivatives is given by the right-hand side of the system
of equations in equation (1). The Nabla operator is discretized using finite
differences to obtain the appropriate derivative terms. The Backward Euler
method is applied iteratively until a stable equilibrium is reached, which
corresponds to the steady-state solution of the system.

The results of the sensitivity analysis are summarized in Table 2.
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λk µk β1,k
Steady-state

solution [0.5ex]
Percentage change

from base case
0.1 0.2 0.1 3.710 -11.0%
0.2 0.2 0.1 6.066 +20.1%
0.3 0.2 0.1 7.965 +49.4%
0.4 0.2 0.1 9.408 +77.3%
0.5 0.2 0.1 10.401 +110.1%
0.1 0.1 0.2 0.190 -94.7%
0.1 0.2 0.2 0.448 -80.1%
0.1 0.3 0.2 0.665 -64.9%
0.1 0.4 0.2 0.852 -51.5%
0.1 0.5 0.2 1.016 -40.2%
0.1 0.2 0.3 0.044 -98.8%
0.1 0.2 0.4 0.004 -99.9%
0.1 0.2 0.5 0.0004 -100.0%

Table 2. Sensitivity analysis of λk, µk and β1,k.

Figure 2. Dynamics of the lung cancer model.

In the base case, we have λk = 0.1, µk = 0.2, and β1,k = 0.1, which gives
a steady-state solution of 4.169. By varying the parameters, we observe
significant changes in the steady-state solution. The percentage change from
the base case is also shown in the Table 3.
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Figure 3. Dynamics of the lung cancer model.

7. Results and conclusion

Analytical results show that system (1) is stable and has a unique solution.
The dynamics of the system can be seen in Figure 2 and Figure 3, with their
interaction rates shown in Figure 4. The findings indicate that the immune
system responds to the presence of lung cancer cells, although it eventually
becomes overpowered in the absence of any controls. In contrast, the lung
epithelial cells flourish in the absence of cancer cells, as illustrated in Figure
3.
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Figure 4. Cell scaling factors and parameters.

The sensitivity analysis carried out on this system showed that changes
in the parameter values of the system can have significant effects on the
steady-state solution of the system.

The results showed that increasing the values of λk and β1,k led to an
increase in the steady-state solution, while increasing the value of µk led to
a decrease in the steady-state solution, as seen in Tables 2, Table 3, Figure
5 and Figure 6.

This suggests that an increase in the rate of lung epithelial cell growth or
the interaction between lung epithelial cells and immune cells could lead to
an increase in the steady-state number of lung cancer cells. On the other
hand, an increase in the rate of cell death or a decrease in the interaction
between lung epithelial cells and immune cells could lead to a decrease in
the steady-state number of lung cancer cells.

The values of λk and µk have a significant impact on the steady-state
solution, where increasing λk or decreasing µk leads to a higher steady-state
solution and a faster growth rate of cancer cells. Conversely, reducing λk

leads to a decrease in the steady-state solution and a decrease in the number
of cancer cells. Other parameters such as µk, β1,k, and β2,k also affect the
steady-state solution. Reducing the cell death rate, increasing cancer cell
production rate, and increasing the angiogenesis rate can all lead to an
increase in the number of cancer cells in the lung.
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Figure 5. Sensitivity coefficients of λk, µk and β1,k.

Figure 6. Sensitivity coefficients of all parameters.
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λk µk β1,k ϕ1,k ϕ2,k ϕ3,k β2,k γk δk β3,k

Steady-state
solution
[0.5ex]

%
change

0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 3.710 -11.0%
0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 6.066 +20.1%
0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 7.965 +49.4%
0.4 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 9.408 +77.3%
0.5 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 10.401 +110.1%
0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.190 -94.7%
0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.448 -80.1%
0.1 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.665 -64.9%
0.1 0.4 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0. 1 0.816 -45.4%
0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 4.447 -4.8%
0.1 0.2 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 5.237 +4.7%
0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 3.592 -14.2%
0.1 0.2 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 3.383 -16.3%
0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 3.553 -14.8%
0.1 0.2 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 3.500 -15.7%
0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 3.705 -11.2%
0.1 0.2 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 3.662 -12.1%
0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 3.739 -10.0%
0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 3.787 -8.8%
0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 3.696 -11.4%

Table 3. Sensitivity coefficients of all parameters.

The efficacy of the Nabla discrete fractional model in analyzing the dy-
namics of lung cancer has been demonstrated to be relevant. The proposed
study is novel and promising because it uses a Nabla discrete fractional-
order model specific to lung cancer, which can potentially provide a better
understanding of lung cancer growth dynamics and help in developing ef-
fective treatment strategies. The use of discrete fractional models and the
combination therapy of immunotherapy and surgery offers advantages over
traditional models and could improve success rates while reducing the ad-
verse effects of treatment.
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