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Suspension bridge model with laminated beam

Carlos Alberto Raposo∗

Abstract. This manuscript introduces a suspension bridge system
where laminated beams model the deck. The action of frictional damp-
ing is considered. Well-posedness is proved using the Lumer-Phillips
theorem, and the exponential stability is obtained by applying the
Gearhart-Huang-Prüss theorem.

1. Introduction

A suspension bridge is a mechanical structure that carries vertical loads
through the main cables modeled by an elastic string u = u(x, t), which
is coupled to the deck employing suspension cables, where x denotes the
distance along the center line of the beam in its equilibrium configuration
and t the time variable.
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Considering that the deck has negligible transversal section dimensions
compared to the length (span of the bridge), it is modeled in Timoshenko’s
theory as a one-dimensional extensible beam of length L.
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Denoting by φ = φ(x, t) the displacement of the cross-section on the point
x ∈ (0, L), by ψ = ψ(x, t) the rotation angle of the cross-section, we have
the following coupled system

utt − αuxx − λ(φ− u) + γ1ut = 0,

ρ1φtt − k(φx − ψ)x + λ(φ− u) + γ2φt = 0,

ρ2ψtt − bψxx + k(φx + ψ) + γ3ψt = 0.

The suspender cables are assumed to be linear elastic springs with stan-
dard stiffness λ > 0. The constant α > 0 is the elastic modulus of the string
(holding the main cable to the deck). The positive coefficients ρ1 and ρ2
are the mass density and the moment of mass inertia of the beam, respec-
tively. Moreover, b represents the cross section’s rigidity coefficient, and k
represents the elasticity’s shear modulus.

In this manuscript, we introduce a model of a suspension bridge where
the deck is modeled by laminated beams,
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The laminated beam system of length L considered here, is a model pro-
posed by Hansen and Spies [9, 10] for two-layered beams in which a slip
s = s(x, t) can occur at the interface of contact, in red at figure above, given
by

ρφtt +G(ψ − φx)x + λ(φ− u) = 0,(1)
Iρ(3Stt − ψtt)−D(3Sxx − ψxx)−G(ψ − φx) = 0,(2)
Iρ3Stt −D3Sxx + 3G(ψ − φx) + 4γ0S + 4δ0St = 0.(3)

The positive parameters ρ, Iρ, G,D, and γ0, are the density, mass moment
of inertia, shear stiffness, flexural rigidity, and adhesive stiffness, respectively.

We consider the action of frictional dampings on each component in (1)-
(3), and, as in [16], to simplify the computations, we make the following
replacements: s(x, t) = 3S(x, t), ξ = (3S − ψ)(x, t) ρ1 = ρ, ρ2 = Iρ, k = G,
b = D, 3γ=4γ0, 3µ4 = 4δ0. Then, we introduce a suspension bridge model
in laminated beams as follows,

utt − αuxx − λ(φ− u) + µ1ut = 0,(4)
ρ1φtt + k(s− ξ − φx)x + λ(φ− u) + µ2φt = 0,(5)

ρ2ξtt − bξxx − k(s− ξ − φx) + µ3ξt = 0,(6)
ρ2stt − bsxx + 3k(s− ξ − φx) + γs+ µ4st = 0.(7)
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The non-negative parameters µi > 0, i = 1, 2, 3, 4, are the coefficients of
the damping force, and µ4 is called the adhesive damping. System (4)–(7)
is subject to the initial data

(u(x, 0), φ(x, 0), ξ(x, 0), s(x, 0)) = (u0(x), φ0(x), ξ0(x), s0(x)), x ∈ (0, L),

(ut(x, 0), φt(x, 0), ξt(x, 0), St(x, 0)) = (u1(x), φ1(x), ξ1(x), s1(x)), x ∈ (0, L),

and Dirichlet boundary conditions

u(0, t) = φ(0, t) = ξ(0, t) = s(0, t) = 0, t ≥ 0,

u(L, t) = φ(L, t) = ξ(L, t) = s(L, t) = 0, t ≥ 0.

In [18], it was proved that the structural damping created by the in-
terfacial slip alone is insufficient to stabilize the laminated beam system
exponentially to its equilibrium state. The question arises of studying the
action of additional stabilizing mechanisms located in other system equa-
tions. A natural damping is the internal (frictional damping). A laminated
beam with friction damping was considered in [16]. The internal damping
combined with thermoelastic damping given by Fourier lay was considered
in [3] for the suspension bridge, modeled by the Timoshenko system, where
the cable is supposed to be thermally insulated, and it was proved that the
solution decays exponentially to zero.

The critical feature in the present paper is introducing dampings in the
system to avoid resonance and produce exponential stabilization for the
structure. Mechanical resonance occurs when the energy transfers from one
object to another with the same natural or resonant frequency. Strong vi-
brations can cause lots of damage to structures and can cause materials to
collapse apart.

The collapse in the mechanical structures can be considered a resonance
effect, as it strongly occurred in the Tacoma Narrows bridge, that collapsed
in 1940, the same year it opened, after being hit by strong winds. In 1831,
the bridge at Broughton, Manchester, collapsed when a company of British
Army Fusile Corps marched across the bridge in synchronized steps. In
2000, the Millennium Bridge, a steel suspension bridge for pedestrian use
linking Bankside with the City of London, suffered an unexpected and ex-
cessive lateral vibration due to a structural resonant response, causing it to
close two days after opening. Problems like these are solved by introduc-
ing stabilizing mechanisms in the structure. That is what happened to the
Rio-Niterói Bridge in Brazil, built in 1968. The bridge vibrated frequently,
causing discomfort to anyone traveling over the bridge. In 2004 synchro-
nized dynamic attenuators were installed, and this application prevented
discomfort, damage, or outright structural failure.

This paper introduces a suspension bridge system where laminated beams
model the deck under the action of frictional damping. The manuscript has
three sections: Introduction, well-posedness, and exponential stability.
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2. Well-posedness

Now, we introduce the vector function

U = (u,w, φ, ϕ, ξ, η, s, z)T ,

where ξ = s− ψ, w = ut, ϕ = φt, η = ξt and z = st.
The system (4)-(7) can be written as

(8)
{

Ut −AU = 0,
U(x, 0) = U0(x),

where the linear operator

A : D(A) ⊂ H → H
is defined by

A



u
w
φ
ϕ
ξ
η
s
z


=



w
− [−αuxx − λ(φ− u) + µ1w]

ϕ

− 1

ρ1
[k(s− ξ − φx)x + λ(φ− u) + µ2ϕ]

η

− 1

ρ2
[−bξxx − k(s− ξ − φx) + µ3η]

z

− 1

ρ2
[−bsxx + k(s− ξ − φx) + γs+ µ4z]


,

on energy space
H = [H1

0 (0, L)× L2(0, L)]4

and
D(A) = [H1

0 (0, L) ∩H2(0, L)×H1
0 (0, L)]

4.

We denote the L2(0, L) inner product by

(f, ḡ) =

∫ L

0
f(x)ḡ(x)dx, ∀ f, g ∈ L2(0, L) and (f, f̄) = ∥f∥2.

In H we consider the following inner product

⟨U, Ũ⟩H = (w, ¯̃w) + α(ux, ¯̃ux)

+ λ(ϕ− u,
¯̃
ϕ− ¯̃u)

+ ρ1(ϕ,
¯̃
ϕ) + ρ2(η, ¯̃η) + ρ2(z, ¯̃z)

+ k(s− ξ − φx, s̄− ¯̃
ξ − ¯̃φx)

+ b(ξx,
¯̃
ξx) + b(sx, ¯̃sx) + γ(z, ¯̃s).

Clear D(A) is dense in H, and H is a Hilbert space with norm

∥U∥2H = ⟨U,U⟩H.
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Proposition 1. The operator A is dissipativo on H, that is,

Re⟨AU,U⟩H = −µ1∥w∥2 − µ2∥ϕ∥2 − µ3∥η∥2 − µ4∥z∥2.(9)

Proof.

⟨AU,U⟩H = (− [−αuxx − λ(φ− u) + µ1w] , w̄) + α(wx, ūx)

+ λ(ϕ− w, φ̄− ū)

+ ρ1(−
1

ρ1
[k(s− ξ − φx)x + λ(φ− u) + µ2ϕ] , ϕ̄)

+ ρ2(−
1

ρ2
[−bξxx − k(s− ξ − φx) + µ3η] , η̄)

+ ρ2(−
1

ρ2
[−bsxx + k(s− ξ − φx) + γs+ µ4z] , z̄)

+ k(z − η − ϕx, s̄− ξ̄ − φ̄x)

+ b(ηx, ξ̄x) + b(zx, s̄x) + γ(z, s̄).

Performing integration by parts, we get

⟨AU,U⟩H = −µ1(w, w̄)− µ2(ϕ, ϕ̄)− µ3(η, η̄)− µ4(z, z̄)

+ λ 2iIm(ϕ− w, φ̄− ū)

+ k 2iIm(z − η − ϕx, s̄− ξ̄ − φ̄x)

+ b 2iIm(ηx, ξ̄x) + b 2iIm(zx, s̄x)

+ α 2iIm(wx, ūx) + γ 2iIm(z, s̄).

Taking the real part we obtain (9). □

Lemma 1. 0 ∈ ρ(A), the resolvent set of A.

Proof. Given F = (f1, f2, f3, f4, f5, f6, f7, f8)T ∈ H, the resolvent equation
−AU = F in H, in terms of the component coordinates of U and F , leads
to

−w = f1 in H1
0 (0, L),(10)

−αuxx − λ(φ− u) + µ1w = f2 in L2(0, L),(11)

−ϕ = f3 in H1
0 (0, L),(12)

k(s− ξ − φx)x + λ(φ− u) + µ2ϕ = ρ1f
4 in L2(0, L),(13)

−η = f5 inH1
0 (0, L),(14)

−bξxx − k(s− ξ − φx) + µ3η = ρ2f
6 in L2(0, L).(15)

−z = f7 inH1
0 (0, L),(16)

−bsxx + k(s− ξ − φx) + γs+ µ4z = ρ2f
8 inL2(0, L).(17)

Replacing (10) in (11), (12) in (13), (14) in (15) and (16) in (17), we get

−αuxx − λ(φ− u) = µ1f
1 + f2 := g1 ∈ L2(0, L),(18)
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k(s− ξ − φx)x + λ(φ− u) = µ2f
3 + ρ1f

4 := g2 ∈ L2(0, L),(19)

−bξxx − k(s− ξ − φx) = µ3f
5 + ρ2f

6 := g3 ∈ L2(0, L).(20)

−bsxx + k(s− ξ − φx) + γs = µ4f
7 + ρ2f

8 := g4 ∈ L2(0, L).(21)

We denote V = H−1(0, L)×H1
0 (0, L). From Sobolev spaces, the following

embeddings hold,

H1
0 (0, L) ↪→ L2(0, L) ≡ [L2(0, L)]′ ↪→ H−1(0, L).

Multiplying (18) by ũ ∈ H1
0 (0, L), (19) by φ̃ ∈ H1

0 (0, L), (20) by ξ̃ ∈
H1

0 (0, L), (21) by s̃ ∈ H1
0 (0, L), respectively, and integrating by parts, we

obtain

α⟨ux, ũx⟩V + λ⟨φ− u,−ũ⟩V = ⟨g1, ũ⟩V ,(22)

k⟨s− ξ − φx,−φ̃x⟩V + λ⟨φ− u, φ̃⟩V := ⟨g2, φ̃⟩V ,(23)

b⟨ξx, ξ̃x⟩V + k⟨s− ξ − φx,−ξ̃⟩V := ⟨g3, ξ̃⟩V ,(24)

b⟨sx, s̃x⟩V + k⟨s− ξ − φx, s̃) + γ(s, s̃⟩V := ⟨g4, s̃⟩V .(25)

Denoting V = [H1
0 (0, L)]

4 and adding (22), (23), (24) and (25), we build
a variational problem

(26) B((u, φ, ξ, s), (ũ, φ̃, ξ̃, s̃)) = L(ũ, φ̃, ξ̃, s̃),

where B : V × V → C is given by

B((u, φ, ξ, s), (ũ, φ̃, ξ̃, s̃)) = α⟨ux, ũx⟩V + λ⟨φ− u, φ̃− ũ⟩V
+ k⟨s− ξ − φx, s̃− ξ̃ − φ̃x⟩V
+ b⟨ξx, ξ̃x⟩V + b⟨sx, s̃x⟩V

and, L : V → C is continuous and linear operator

L(ũ, φ̃, ξ̃, s̃) = ⟨g1, ũ⟩V + ⟨g2, φ̃⟩V + ⟨g3, ξ̃⟩V + ⟨g4, s̃⟩V .

We define in V the norm ||(u, φ, ξ, s)||2V = B((u, φ, ξ, s), (u, φ, ξ, s)). It is
easy to see that with this norm, B is a continuous coercive sesquilinear form
on V. Therefore, by Lax-Milgram theorem, there exists a unique (u, φ, ξ, s) ∈
V solution of (26), for all (ũ, φ̃, ξ̃, s̃) ∈ V. By the standad theory in the eliptic
equations, see [13], chapter 1, (18), (19), (20) and (21) lead to u, φ, ξ, s ∈
H2(0, L), and then, u, φ, ξ, s ∈ H1

0 (0, L) ∩ H2(0, L). From (10), (12), (14)
and (16) we have w, ϕ, η, z ∈ H1

0 (0, L). So, we have U ∈ D(A) and the
unique solution of −AU = F follows. Note that ∥U∥H ≤ K∥F∥H with K a
positive constant independent of U , that is ∥A−1F∥H ≤ K∥F∥H. Thus, we
conclude that 0 ∈ ρ(A). □

The well-posedness of (4)-(7) is ensured by the following theorem.
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Theorem 1. For U0 ∈ H, there exists a unique weak solution U of (8)
satisfying

(27) U ∈ C0((0,∞);H).

Moreover, if U0 ∈ D(A), then

(28) U ∈ C0((0,∞);D(A)) ∩ C1((0,∞);H).

Proof. AsD(A) is dense in H, A is dissipative and 0 ∈ ρ(A). As consequence
of the Lumer-Philips theorem, see [13], Theorem 1.2.4, p. 3., we have that A
generates a C0-semigroup of contractions S(t) = etA on H. From semigroup
theory, see [14], p. 100. U(t) = etAU0 is the unique solution of (8) satisfying
(27) and (28). □

3. Stability

Consider the following results.

Theorem 2 (Gagliardo-Niremberg). Let j and m be integers satisfying 0 ≤
j < m, and let 1 ≤ q, r ≤ ∞, and p ∈ R,

j

m
≤ a ≤ 1 such that

1

p
− j

n
= a

(
1

r
− m

n

)
+ (1− a)

1

q
.

Then, for any u ∈ Wm,r(Ω) ∩ Lq(Ω) where Ω ⊂ Rn is a bounded domain
with smooth boundary, there are two positive constants C1, C2 such that

|Dju|Lp(Ω) ≤ C1|Dmu|aLr(Ω)|u|
1−a
Lq(Ω) + C2|u|Lq(Ω).

In particular, for any u ∈ Wm,r
0 (Ω) ∩ Lq(Ω), the constant C2 can be taken

as zero.

Theorem 3 (Gearhart-Huang-Prüss ). Let S(t) = eAt be a C0-semigroup
of contractions on a Hilbert space H. Then, S(t) is exponentially stable if,
only if,

iR ⊂ ρ(A), the resolvent set of A.

and

lim
|β|→∞

∥(iβI −A)−1∥H <∞.

Proof. See [7, 12,15]. □

Lemma 2. Let H be a Hilbert space and B,L : H → H bounded linear

operators, where L has a limited inverse. If ||B||H <
1

||L−1||H
, then B + L

is a bounded and invertible linear operator.
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Proof. First we prove that B + L is invertible, i. e., B + L is bijective. Let
y ∈ H. For x ∈ H, P (x) = L−1y−L−1Bx is a bounded linear operator. On
the other hand,

||P (z)− P (x)||H = ||L−1Bz − L−1Bx||H
≤ ||L−1||H ||Bz −Bx||H
≤ ||L−1||H |||B||H ||z − x||H
≤ C||z − x||H .

Since C = ||L−1||H |||B||H we have 0 < C < 1. By contraction mapping
theorem, there exists a unique point x ∈ X such that P (x) = x. Since
L−1y − L−1Bx = x we get Lx = y − Bx and then x is the unique solution
of the problem (B+L)x = y. We have that B+L is surjective. To see that
B+L is also injective, note that (B+L)x = 0 leads to x = L−1Bx and then
||x||H ≤ C||x||H . As C < 1 we get x = 0. Finally, as B + L is bounded, by
the closed graph theorem, it follows that (B + L)−1 is also bounded. □

Lemma 3. iR ⊂ ρ(A).

Proof. Defining L = −I : H → H we obtain ||L|| = ||L−1|| = 1. As
0 ∈ ρ(A) we have that A is invertible, and we can define B = iλA−1. For

|λ| < 1

||A−1||
,(29)

follows that
||B|| = ||iλA−1|| < 1 =

1

||L−1||
.

From Lemma 2 the operator B + L = iλA−1 − I is invertible. Writing

iλI −A = A(iλA−1 − I)

we deduce that iλI−A is invertible because it is a composition of invertible
operators.

From (29) we get that the real function ||(iλI − A)−1|| is continuous in
the interval (

− 1

||A−1||
,

1

||A−1||

)
.

If iR ⊂ ρ(A) is not true, then there exists θ ∈ R with
1

∥A−1∥
≤ |θ| <∞,

such that

{iβ : |β| < |θ|}(30)

satisfies

sup
{
||(iβ −A)−1|| : |β| < |θ|

}
= ∞.(31)

By (30) we can extract a sequence βn → θ, |βn| < |θ| and a sequence

Un = (iβnI −A)−1 Fn ⊂ D(A), Fn ∈ H, ∥Un∥H = 1.
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Since |βn| < |θ| from (31) we deduce that

|| (iβnI −A)−1 Fn|| → ∞, as n→ ∞,

or equivalently,
|| (iβnI −A)Un|| → 0, as n→ ∞,

that is,

iβnun − wn → 0 in H1
0 (0, L),(32)

iβnwn − αunxx − λ(φn − un) + µ1w
n → 0 in L2(0, L),(33)

iβnφn − ϕn → 0 in H1
0 (0, L),(34)

iβnϕn +
1

ρ1
[k(sn − ξn − φn

x)x + λ(φn − un) + µ2ϕ
n] → 0 in L2(0, L),(35)

iβnξn − ηn → 0 in H1
0 (0, L),(36)

iβnηn +
1

ρ2
[−bξnxx − k(sn − ξn − φn

x) + µ3η
n] → 0 in L2(0, L).(37)

iβnsn − zn → 0 in H1
0 (0, L),(38)

iβnzn +
1

ρ2
[−bsnxx + k(sn − ξn − φn

x) + γsn + µ4z
n] → 0 in L2(0, L).(39)

Multiplying (iβnI−A)Un by Un in H, and taking the real part, and using
(9), we get

Re⟨(iβnI −A)Un, Un⟩H = −µ1∥wn∥2 − µ2∥ϕn∥2 − µ3∥ηn∥2 − µ4∥zn∥2.
As Un bounded and (iβnI −A)Un → 0 we obtain

wn → 0 in L2(0, L),(40)

ϕn → 0 in L2(0, L),(41)

ηn → 0 in L2(0, L),(42)

zn → 0 in L2(0, L).(43)

From (40) and (32) we have iβnun → 0 in L2(0, L), and using βn → θ,
we get

(44) un → 0 in L2(0, L).

We need to prove that un → 0 in H1
0 (0, L). Using (41) in (34), (42) in

(36) and (43) in (38), we found

φn → 0 in L2(0, L),(45)

ξn → 0 in L2(0, L).(46)

sn → 0 in L2(0, L).(47)

Using (40), (44) and (45) in (33), we obtain

(48) unxx → 0 in L2(0, L),



86 Suspension bridge model with laminated beam

and integrating from 0 to x we have

(49) unx − unx(0) → 0 in L2(0, L).

Applying Gagliardo-Niremberg inequality with Ω = (0, L), m = 2, a =
1

2
,

p = 2, r = 2, j = 1, n = 1, q = 2, we deduce that

||unx(0)||L2(0,L) ≤ C1||unxx(0)||
1
2

L2(0,L)
||un(0)||

1
2

L2(0,L)
+ C2||un(0)||L2(0,L).

From (44), un(0) → 0 in L2(0, L) and by (48), unxx is bounded in L2(0, L).
So, we have unx(0) → 0 in L2(0, L) and by (49) unx → 0 in L2(0, L). As
un → 0 in L2(0, L) and unx → 0 in L2(0, L), then

(50) un → 0 in H1
0 (0, L).

Applying same idea, we can deduce that

φn → 0 in H1
0 (0, L).(51)

ξn → 0 in H1
0 (0, L).(52)

sn → 0 in H1
0 (0, L).(53)

From (40), (41), (56), (50), (51), (52) and (53), we obtain ||Un||H → 0,
contradicting ||Un||H = 1. □

Now, we present and prove our main result.

Theorem 4. The semigroup S(t) = eAt, t ≥ 0, generated by A is exponen-
tially stable.

Proof. As iR ⊂ ρ(A), it remains to prove that

lim
|β|→∞

∥(iβI −A)−1∥H <∞.(54)

If (54) is not true, there exists a sequence βn → ∞, without loss of generality
βn > 0, a sequence of complex vectors Fn ∈ H and a corresponding sequence
Un = (un, wn, φn, ϕn, ξn, ηn, sn, zn)T ∈ D(A), with ∥Un∥H = 1,

Un = (iβI −A)−1Fn,(55)

such that,
|| (iβnI −A)−1 Fn||H

||Fn||H
> n, ∀n > n0,

or, equivalently

||Fn||H <
|| (iβnI −A)−1 Fn||H

n
=

||Un||H
n

=
1

n
, ∀n > n0,

from where follows that Fn → 0 in H and from (55),

(56) ∥(iβnI −A)Un∥H → 0 as n→ ∞.
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Taking the inner product of (iβnI −A)Un with Un in H we have

⟨(iβnI −A)Un, Un⟩H = ⟨Fn, Un⟩H
that is,

iβn||Un||H − ⟨AUn, Un⟩H = ⟨Fn, Un⟩H
Taking the real part and using (9) we get

µ1∥wn∥2 + µ2∥ϕn∥2 + µ3∥ηn∥2 + µ4∥zn∥2 = Re ⟨Fn, Un⟩H
As Un is bounded and Fn → 0 in H we have that

wn → 0 in L2(0, L),(57)

ϕn → 0 in L2(0, L),(58)

ηn → 0 in L2(0, L),(59)

zn → 0 in L2(0, L),(60)

From (56) we obtain,

iβnun − wn → 0 in H1
0 (0, L),(61)

iβnwn − αunxx − λ(φn − un) + µ1w
n → 0 in L2(0, L),(62)

iβnφn − ϕn → 0 in H1
0 (0, L),(63)

iβnϕn +
1

ρ1
[k(sn − ξn − φn

x)x + λ(φn − un) + µ2ϕ
n] → 0 in L2(0, L),(64)

iβnξn − ηn → 0 in H1
0 (0, L),(65)

iβnηn +
1

ρ2
[−bξnxx − k(sn − ξn − φn

x) + µ3η
n] → 0 in L2(0, L).(66)

iβnsn − zn → 0 in H1
0 (0, L),(67)

iβnzn +
1

ρ2
[−bsnxx + k(sn − ξn − φn

x) + γsn + µ4z
n] → 0 in L2(0, L).(68)

Using (57) in (61), (58) in (63), (59) in (65) and (60) in (67), we obtain

βnun → 0 in L2(0, L),

βnφn → 0 in L2(0, L),

βnξn → 0 in L2(0, L),

βnsn → 0 in L2(0, L).

Taking into account that βn → ∞, the last convergence leads to

un → 0 in L2(0, L),(69)

φn → 0 in L2(0, L),(70)

ξn → 0 in L2(0, L),(71)

sn → 0 in L2(0, L),(72)
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however, we need to prove that

un → 0 in H1
0 (0, L),(73)

φn → 0 in H1
0 (0, L),(74)

ξn → 0 in H1
0 (0, L),(75)

sn → 0 in H1
0 (0, L).(76)

From (57), (69) and (70), we deduce from (62) that

unxx → 0 in L2(0, L).

Now, integrating from 0 to x and applying Gagliardo-Niremberg inequal-
ity as in the proof of lemma 3, we obtain unx → 0 in L2(0, L) and then, we
obtain the following convergence

(77) un → 0 in H1
0 (0, L).

Applying the same idea, we can prove that

φn → 0 in H1
0 (0, L),(78)

ϕn → 0 in L2(0, L),(79)

ξn → 0 in H1
0 (0, L),(80)

ηn → 0 in L2(0, L),(81)

sn → 0 in H1
0 (0, L),(82)

zn → 0 in L2(0, L).(83)

Thus, it follows from (57), (77), (78), (79), (80), (81), (82) and(83) that
||Un||H → 0, which is a contradiction with ||Un||H = 1. □

Final remarks and open problems

The instability of suspension bridges is a worrisome question for engi-
neering, mathematics and physics. Several models were introduced in the
literature to solve each instability issue, for instance, [1, 2, 4–6, 8, 11]. The
most used model for beams in the literature is given by Timoshenko theory,
which deals with both the effect of rotary inertia and shear deformation.
We introduce the system in which the deck is modeled by laminated beams.
It consists of two Timoshenko beams connected by an adhesive layer and
proves the exponential stability by using just the internal damping given
by friction. Other stabilizing mechanisms can be introduced for the model
proposed in this manuscript, and consequently, the stability analysis in each
situation is an important and open question to be considered.
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