
doi: 10.5937/MatMor2302127S
Mathematica Moravica
Vol. 27, No. 2 (2023), 127–136

k−regular decomposable
incidence structure of maximum degree

Dejan Stošović, Anita Katić, Dario Galić

Abstract. This paper discusses incidence structures and their rank.
The aim of this paper is to prove that there exists a regular decom-
posable incidence structure J = (P,B) of maximum degree depending
on the size of the set and a predetermined rank. Furthermore, an al-
gorithm for construction of this structures is given. In the proof of
the main result, the points of the set P are shown by Euler’s formula of
complex number. Two examples of construction the described incidence
structures of maximum degree 6 and maximum degree 30 are given.

1. Introduction

An incidence structure is a triple (P,B, I), where P and B are two disjoint
sets and I is a subset of P×B. The elements of P are called points, the ele-
ments of B are called blocks and J is called incidence relation. Let Pb ⊆ P
be a set of points that are incidence with the block b. If the implication
b ̸= b′ ⇒ Pb ̸= Pb′ holds, the incidence structure is said to be simple. Accord-
ingly, if B is a family of nonempty subset of P (B ⊆ P (P) \ {∅}) and I defines
the following incidence relation: (P, b) ∈ I ⇔ P ∈ b (∀P ∈ P, ∀b ∈ B), then
(P,B, I) is the simple incidence structure.

In this paper we will talk about the previously described simple incidence
structure. For the sake of simplicity, we will denote J = (P,B) and we will
just call it incidence structure.

The incidence structure J = (P,B) (B ⊆ P (P) \ {∅}) is called regular of
degree k, or k−regular if every point of P is in exactly k blocks.

The rank of the incidence structure J = (P,B) is number d = d (J ) =
max{|b|, b ∈ B}. The incidence structure is called uniform if and only if
every block of B has a cardinality d (J ). The cardinality of the block b (|b|)
can also be called the length of the block b.
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128 k−regular decomposable incidence structure

A decomposition of an incidence structure J = (P,B) is a partition of
P into point classes together with a partition of B into block classes. If a
partition has k subset, it is called k−partition.

In [1], [5], [7] and [8], nets, k-nets, seminets, 3-seminets and their corre-
sponding groupoids are investigated.

Analogous to the concept of k−seminets, that are introduced by Janez
Ušan in [9], a k−regular decomposable incidence structure can be defined.

Definition 1. Let (P,B) be a regular incidence structure and let Π =
{X1, . . . , Xk} , k ∈ N \ {1, 2} be a partition of set B such that:

(∀x ∈ Xi)
(
∀x′ ∈ Xj

){∣∣x ∩ x′
∣∣ = 0, i = j;(1a) ∣∣x ∩ x′
∣∣ ≤ 1, i ̸= j.(1b)

Then, for an ordered pair Jk = (P,Π) or J = (P, {X1, . . . , Xk}) we say that
is a k−regular decomposable incidence structure.

The elements of the set Π are called classes. It is easy to check that, due
to regularity and equation (1a), each of the classes X1, . . . , Xk is a partition
of the set P.

The incidence structures and partitions of the set are discussed in more
detail in the [3] and [4]. Thus it is known that a Stirling number of the
second kind

Π(n, l) =
1

l!

l∑
j=0

(−1)j
(
l

j

)
(l − j)n

gives the number of partitions of a set P with cardinality n and l non-empty
subsets, and the Bell number

Π(n) =
n∑

l=1

π (n, l)

gives the number of all partitions of set P with cardinality n [2], [6].

2. Main results

In [3], Galić defines U-k-seminets of maximal degree and shows the ex-
istence and construction depending on the set over which one constructs a
k-seminets. Further, in [4], it is shown how many U-k-seminets of maximal
degree can be constructed over the set for the given t-order.

In this paper, we will show the existence and construction of a regular
decomposable incidence structure of maximum degree k depending on the
size of the set P and a predetermined rank d. This is described and proved
in such a way that the points of the set P are shown by Euler’s formula of
complex number, located on two concentric circles. We talk about this in
the following theorem.
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Theorem 1. Let P be a set of points such that |P| = t, t ∈ {3, 4, . . .} ⊂ N.
Then for

2 ≤ d <
t+ 2

2

there is a family B of subsets of P whose rank is d and there is a partition
π = {X1, . . . , Xk} of B so that (P,B) is a regular decomposable incidence
structure of degree k ≤ t− d+ 2.

Proof. We will present the proof according to the following cases:
(1) t = 2r :

a) d = 2j, j ∈ N and r = odd;
b) d = 2j, j ∈ N and r = even;
c) d = 2j + 1, j ∈ N and r = odd;
d) d = 2j + 1, j ∈ N and r = even;

(2) t = 2r + 1 :
a) d = 2j, j ∈ N and r = odd;
b) d = 2j, j ∈ N and r = even;
c) d = 2j + 1, j ∈ N and r = odd;
d) d = 2j + 1, j ∈ N and r = even;

Proof of case (1)a). We will show the points of set P using the Euler’s
formula of complex numbers located on two concentric circles. Let b be the
block with the maximum length d = |b| and arrangement of points on the
outer circle, and let bc = P\ b be the set of points on the inner circle, so that
|bc| = m = t− d, where the points are arranged as in Figure 1.

Figure 1.
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Then the set P will have the following form:

P =

{
2ei

2π
m , 2ei

2π
m

·2, . . . , 2ei
2π
m

·(d−1), 2ei
2π
m

· r+m+1
2 , ei

2π
m , ei

2π
m

·2, . . .

ei
2π
m

·(d−1), ei
2π
m

·d, . . . , ei
2π
m

· d+r−1
2 , ei

2π
m

· d+r+1
2 , . . . , ei

2π
m

·r,

ei
2π
m

·(r+1), . . . , ei
2π
m

· r+m−1
2 , ei

2π
m

· r+m+1
2 , ei

2π
m

· r+m+3
2 , . . . , ei

2π
m

·m
}
.

The partition X1 of the set P will consist of blocks composed of pairs of
points located at the vertices of the chord or at the vertices of the radius
sections connecting the two concentric circles (see Figure 1). It follows that
class X1 consists of the following blocks:

X1 =

{{
ei

2π
m , 2ei

2π
m

}
,
{
ei

2π
m

·2, 2ei
2π
m

·2
}
, . . . ,

{
ei

2π
m

·(d−1), 2ei
2π
m

·(d−1)
}
,{

ei
2π
m

· r+m+1
2 , 2ei

2π
m

· r+m+1
2

}
, . . . ,

{
ei

2π
m

· d+r−1
2 , ei

2π
m

· d+r+1
2

}
,{

ei
2π
m

·d, ei
2π
m

·r
}
, . . . ,

{
ei

2π
m

· r+m−1
2 , ei

2π
m

· r+m+3
2

}
, . . . ,

{
ei

2π
m

·(r+1), 1
}}

.

Partition Xs, s ∈ {1, 2, . . . ,m} will be obtained from class X1 by rotating
the complex points of the smaller circle around the center by angle α =

−2π

m
(s− 1), and then for the blocks we take pairs of points located at the

vertices of the tendons and the vertices of the radius sections as in the case
of class X1.

In this way, general class Xs, s ∈ {1, 2, . . . ,m} will have the following
form:

Xs =

{{
ei

2π
m

·s, 2ei
2π
m

}
,
{
ei

2π
m

·(s+1), 2ei
2π
m

·2
}
, . . . ,

{
ei

2π
m

·(d+s−2), 2ei
2π
m

·(d−1)
}
,{

ei
2π
m

· r+m+1
2

+s−1, 2ei
2π
m

· r+m+1
2

}
, . . . ,

{
ei

2π
m

· d+r−1
2

+s−1, ei
2π
m

· d+r+1
2

+s−1
}
,{

ei
2π
m

·(d+s−1), ei
2π
m

·(r+s−1)
}
, . . . ,

{
ei

2π
m

· r+m−1
2

+s−1, ei
2π
m

· r+m+3
2

+s−1
}
,

. . . ,
{
ei

2π
m

·(r+s), ei
2π
m

·(m+s−1)
}}

.

Since each pair of points set b
c belonging to the same block has a different

arc distance, which is α =
2π

m
· l, where l ∈ {1, 2, . . . , r − d}, this ensures

that statements (1)a) and (1)b) hold for partitions X1, . . . , Xm.
Partition Xm+1 will consist exclusively of blocks with cardinality one and

will have the following form:

Xm+1 =

{{
2ei

2π
m

}
, . . . ,

{
ei

2π
m

}
, . . . ,

{
ei

2π
m

·(m−1)
}
, {1}

}
.
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It remains to form partition X0 which will contain block

b =

{
2ei

2π
m , . . . , 2ei

2π
m

·(d−1), 2ei
2π
m

· r+m+1
2

}
with the maximum number of elements. We will arrange the remaining
elements from b

c
(
|bc| = 2 (r − j)

)
into blocks with cardinality two, so that

the difference between the elements in the same block is r− j. Since r− j ≤
r−d, then it follows that blocks from partition X0 cannot have two elements
in common with any block from classes X1, . . . , Xm, Xm+1. Partition X0 will
have the following form:

X0 =

{
b,
{
ei

2π
m , ei

2π
m

·m+2
2

}
, . . . ,

{
ei

2π
m

·m−2
2 , ei

2π
m

·(m−1)
}
,
{
eiπ, ei2π

}}
.

Thus, m+ 2 = t− d+ 2 partitions X0, X1, . . . , Xm, Xm+1 were formed that
satisfy conditions (1a) and (1b). If we put B = X0 ∪ · · · ∪ Xm+1, then we
get that Jk = (P,B), i.e., Jk = (P, {X0, X1, . . . , Xm, Xm+1}) is a k−regular
decomposable incidence structure of rank d.

Case (1)b): Let d = 2j, j ∈ N and r is even. In this case, the partitions
X1, . . . , Xs, . . . Xm will be formed according to the same methodology as in
case (1)a). Now, the general class Xs, s ∈ N will have the following form:

Xs =

{{
ei

2π
m

·s, 2ei
2π
m

}
,
{
ei

2π
m

·(s+1), 2ei
2π
m

·2
}
, . . . ,

{
ei

2π
m

·(d+s−2), 2ei
2π
m

·(d−1)
}
,{

ei
2π
m

· d+r
2

+s−1, ei
2π
m

· d+r
2

}
,
{
ei

2π
m

· d+r−2
2

+s−1, ei
2π
m

· d+r+2
2

+s−1
}
,

. . . ,
{
ei

2π
m

·(d+s−1), ei
2π
m

·(r+s−1)
}
, . . . ,{

ei
2π
m

· r+m
2

+s−1, ei
2π
m

· r+m+2
2

+s−1
}
, . . . ,

{
ei

2π
m

(r+s), ei
2π
m

(m+s−1)
}}

.

The remaining two classes X0, Xm+1 will have the same form as in case
(1)a). With the same conclusion as in case (1)a) it follows that Jk =
(P, {X0, X1 . . . , Xm+1}) is a k−regular decomposable incidence structure of
rank d.

Case (1)c): Let d = 2j + 1, j ∈ N, r is odd. In this case the partitions
X1, . . . , Xm will have exactly the same form as in case (1)b). However, in
partition X0, which contains block b =

{
2ei

2π
m , . . . , 2ei

2π
m

·(d−1), 2ei
2π
m

· d+r
2

}
with the maximum length, except the blocks with cardinality two, due to
m = 2 (r − j)− 1 which is odd, one block will be with cardinality one. We
will form blocks with cardinality two so that the arc difference between the

elements from the same block is α =
2π

m
· m− 1

2
>

2π

m
(r − d).
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The partition X0 will have the following form:

X0 =

{
b,

{
ei

2π
m , ei

2π
m

·m+1
2

}
,
{
ei

2π
m

·2, ei
2π
m

·m+3
2

}
,

. . . ,
{
ei

2π
m

·m−1
2 , ei

2π
m

·(m−1)
}
, {ei2π}

}
.

We will form partition Xm+1 out of blocks with cardinality one, except
that we will form one block with cardinality two containing points ei2π and

ei
2π
m

·m+1
2 , because m− m+ 1

2
=

m− 1

2
> r− d, so class Xm+1 will have the

following form:

Xm+1 =

{{
2ei

2π
m

}
, . . . ,

{
ei

2π
m

}
, . . . ,

{
ei

2π
m

·m−1
2

}
,
{
ei

2π
m

·m+3
2

}
,

. . . ,
{
ei

2π
m

·(m−1)
}
,
{
ei2π, ei

2π
m

·m+1
2

}}
.

Similarly as in the previous cases, we come to a conclusion that in this case
too Jk = (P, {X0, X1 . . . , Xm+1}) is a k−regular decomposable incidence
structure.

Case (1)d): Let d = 2j + 1, j ∈ N and r is even. In this case the partitions
X1, . . . , Xm will have exactly the same form as in case (1)a). Partitions X0

and Xm+1 will have the same form as in case (2)a). It follows that in this
case, the statement of the theorem holds.
Proof of case (2): The proof for case (2), i.e., when t = 2r + 1, is carried
out in an analogous way as for case (1). Therefore, we omit this proof. □

Theorem 2. Let P be the set of points such that |P| = t, t ∈ {2, 3, . . .} ⊂ N.
Then for

2 ≤ d <
t+ 2

2
there is no regular decomposable incidence structure Jk = (P, {X1 . . . , Xk})
of rank d, so that k > t− d+ 2.

Proof. We will carry out the proof by determining the maximum number of
blocks, that can be formed so that they contain an arbitrary point from the
set P, and which can be distributed in different partitions so that require-
ments (1a) and (1b) are met.

Without the loss of generality, we can carry out the consideration for an
arbitrary point r from block b =

{
1, 2, . . . , r, d− 1, d

}
, whose rank is d. Out

of points of the block b, we can form only block {r} with cardinality one,
because if we were to form a block with more than one point, then we would
come into contradiction with the requirement (1b).

It remains to check the possibility of forming the maximum number of
blocks that contain point r and one of the points from the set P \ b = b

c
=

{1, 2, . . . ,m}, but in such a way that satisfies condition (1b).
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The previous requirement is equivalent to the requirement that among the
partitions of the set b

c, the partition that has the most subsets is chosen,
and then each of these subsets is expanded with the element r. The required
partition of the set b

c is the set of all subsets with cardinality one. This
means that the maximum number of blocks that meet condition (1b), and
contain point r and one of the points from set bc, has m. Such blocks have the
form {r, 1} , {r, 2} , . . . , {r,m}, which together with blocks b =

{
1, 2, . . . , d

}
and {r} give a total of m+2 blocks, satisfying condition (1b). Since in each
partition, there must be a block containing the point r, it follows that at
most m+2 = t−d+2 partitions can be formed. Therefore, there is no regular
decomposable incidence structure of rank d and degree k > t− d+ 2. □

Now, after the proof of Theorem 1 and Theorem 2, it makes sense to state
the following definition:

For a η-regular decomposable incidence structure Jη = (P, {X1 . . . , Xη})
we say that it is a maximal regular decomposable incidence structure over
the set P if and only if η ≥ k holds for every k−regular decomposable
incidence structure over the set P.

Based on the previous definition, and theorems 1 and 2, we directly obtain
that the following statement is valid.

Corollary 1. Let P be the set of points such that |P| = t ≥ 2. Then, for

2 ≤ d <
t+ 2

2
there exists a maximal η-regular decomposable incidence structure of rank d
over the set P, such that η = t− d+ 2.

Example 1. Let P be a set of 6 points. According to Corollary 1, for
d = 2, there exists a regular decomposable incidence structure of degree
k = t− d+ 2 = 6− 2 + 2 = 6. Let’s construct that structure in accordance
with the notation used in the paper. We will place the points of the longest
block b on the outer of the two concentric circles, and the points from its
complement on the inner circle. At the same time, let b = {2ei

π
2 , 2eiπ},

b
c
= {ei

π
2 , eiπ, ei

3π
2 , ei2π}. So, set P = {2ei

π
2 , . . . , ei2π}.

Figure 2 shows how we form the set

X1 =

{{
2ei

π
2 , ei

π
2

}
,
{
2eiπ, eiπ

}
,
{
ei

3π
2 , ei2π

}}
.

By rotating the inner circle three times by the angle −π

2
, we get the following

sets:

X2 =

{{
2ei

π
2 , eiπ

}
,
{
2eiπ, ei

3π
2

}
,
{
ei

π
2 , ei2π

}}
,

X3 =

{{
2ei

π
2 , ei

3π
2

}
,
{
2eiπ, ei2π

}
,
{
ei

π
2 , eiπ

}}
,
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Figure 2.

X4 =

{{
2ei

π
2 , ei2π

}
,
{
2eiπ, ei

π
2

}
,
{
eiπ, ei

3π
2

}}
.

According to Theorem 1, set X5 consists of one-membered subsets:

X5 =

{{
2ei

π
2

}
,
{
2eiπ

}
,
{
ei

π
2

}
,
{
eiπ

}
,
{
ei

3π
2

}
,
{
ei2π

}}
.

Also,

X0 =

{{
2ei

π
2 , 2eiπ

}
,
{
ei

π
2 , eiπ

}
,
{
ei

3π
2 , ei2π

}}
.

A set Π =
{
X0, X1, X2, X3, X4, X5

}
is a partition of the set

B =

{{
2ei

π
2

}
,
{
2eiπ

}
,
{
ei

π
2

}
,
{
eiπ

}
,
{
ei

3π
2

}
,
{
ei2π

}
,
{
2ei

π
2 , 2eiπ

}
,{

2ei
π
2 , ei

π
2

}
,
{
2ei

π
2 , eiπ

}
,
{
2ei

π
2 , ei

3π
2

}
,
{
2ei

π
2 , ei2π

}
,
{
2eiπ, ei

π
2

}
,{

2eiπ, eiπ
}
,
{
2eiπ, ei

3π
2

}
,
{
2eiπ, ei2π

}
,
{
ei

π
2 , eiπ

}
,
{
ei

π
2 , ei

3π
2

}
,{

ei
π
2 , ei2π

}
,
{
eiπ, ei

3π
2

}
,
{
eiπ, ei2π

}
,
{
ei

3π
2 , ei2π

}}
and satisfies the conditions of the Definition 1. Therefore (P,Π) is 6-regular
decomposable incidence structure with rank 2.
Note. We notice that each element of the set P is located in exactly 6
blocks, which is a condition of the regularity of the structure (P,Π).

Example 2. Let P be a set with 34 points. A k-regular decomposable in-
cidence structure of maximum rank d = 6 should be constructed. Since we
have r = 17 due to |P| = 34 = 2r, the requirement 2 ≤ d ≤ r is fulfilled.
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Then, according to the theorem it follows that a k−regular decomposable
incidence structure of maximum degree k = t − d + 2 = 30 can be con-
structed. Because d is even and r is odd, the computer program was created
according to the scheme in the proof of the Theorem 1 for case (1)a), and
the required incidence structure J30 = (P, {X0, X1 . . . , X29}) will have the
following partitions:

X0 =
{{

1, 2, 3, 4, 5, 6
}
,
{
7, 21

}
,
{
8, 22

}
,
{
9, 23

}
,
{
10, 24

}
,
{
19, 33

}
,
{
20, 34

}}
.

X1 =
{{

1, 7
}
,
{
2, 8

}
,
{
3, 9

}
,
{
4, 10

}
,
{
5, 11

}
,
{
6, 29

}
,
{
12, 23

}
,{

13, 22
}
,
{
14, 21

}
,
{
15, 20

}
,
{
16, 19

}
,
{
17, 18

}
,{

24, 34
}
,
{
25, 33

}
,
{
26, 32

}
,
{
27, 31

}
,
{
28, 30

}}
.

X2 =
{{

1, 8
}
,
{
2, 9

}
,
{
3, 10

}
,
{
4, 11

}
,
{
5, 12

}
,
{
6, 30

}
,
{
13, 24

}
,{

14, 23
}
,
{
15, 22

}
,
{
16, 21

}
,
{
17, 20

}
,
{
18, 19

}
,{

25, 7
}
,
{
26, 34

}
,
{
27, 33

}
,
{
28, 32

}
,
{
29, 31

}}
.

...

X27 =
{{

1, 33
}
,
{
2, 34

}
,
{
3, 7

}
,
{
4, 8

}
,
{
5, 9

}
,
{
6, 27

}
,
{
10, 21

}
,{

11, 20
}
,
{
12, 19

}
,
{
13, 18

}
,
{
14, 17

}
,
{
15, 16

}
,
{
22, 32

}
,{

23, 31
}
,
{
24, 30

}
,
{
25, 29

}
,
{
26, 28

}}
.

X28 =
{{

1, 34
}
,
{
2, 7

}
,
{
3, 8

}
,
{
4, 9

}
,
{
5, 10

}
,
{
6, 28

}
,
{
11, 22

}
,{

12, 21
}
,
{
13, 20

}
,
{
14, 19

}
,
{
15, 18

}
,
{
16, 17

}
,{

23, 33
}
,
{
24, 32

}
,
{
25, 31

}
,
{
26, 30

}
,
{
27, 29

}}
.

X29 =
{{

1
}
,
{
2
}
,
{
3
}
,
{
4
}
,
{
5
}
,
{
6
}
,
{
7
}
,
{
8
}
,
{
9
}
,
{
10
}
,
{
11
}
,
{
12
}
,
{
13
}
,{

14
}
,
{
15

}
,
{
16
}
,
{
17
}
,
{
18
}
,
{
19
}
,
{
20
}
,
{
21
}
,
{
22

}
,
{
23
}
,
{
24
}
,{

25
}
,
{
26
}
,
{
27
}
,
{
28
}
,
{
29
}
,
{
30
}
,
{
31
}
,
{
32

}
,
{
33
}
,
{
34
}}

.

3. Conclusion

Many researchers have worked on incidence structures in different branches
of mathematics. In this paper, we investigate the degree of regularity of the
incidence structure. The points are represented by the Euler’s formula of
complex number, which enables a more detailed representation of the con-
struction of the partition of the incidence structure, considering which rank
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of the regular decomposable incidence structure will be maximal. We gave
an algorithm for determining k-regular incidence structures of a given rank
and showed the construction on two examples.
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