Operator upper bounds for Davis-Choi-Jensen's difference in Hilbert spaces

Silvestru Sever Dragomir ${ }^{1,2}$

Abstract. In this paper we obtain several operator inequalities providing upper bounds for the Davis-Choi-Jensen's Difference

$$
\Phi(f(A))-f(\Phi(A))
$$

for any convex function $f: I \rightarrow \mathbb{R}$, any selfadjoint operator A in H with the spectrum $\operatorname{Sp}(A) \subset I$ and any linear, positive and normalized map $\Phi: \mathcal{B}(H) \rightarrow \mathcal{B}(K)$, where H and K are Hilbert spaces. Some examples for convex and operator convex functions are also provided.

1. Introduction

Let H be a complex Hilbert space and $\mathcal{B}(H)$, the Banach algebra of bounded linear operators acting on H. We denote by $\mathcal{B}_{h}(H)$ the semi-space of all selfadjoint operators in $\mathcal{B}(H)$. We denote by $\mathcal{B}^{+}(H)$ the convex cone of all positive operators on H and by $\mathcal{B}^{++}(H)$ the convex cone of all positive definite operators on H.

Let H, K be complex Hilbert spaces. Following [1] (see also [9, p. 18]) we can introduce the following definition.

Definition 1. A map $\Phi: \mathcal{B}(H) \rightarrow \mathcal{B}(K)$ is linear if it is additive and homogeneous, namely

$$
\Phi(\lambda A+\mu B)=\lambda \Phi(A)+\mu \Phi(B)
$$

for any $\lambda, \mu \in \mathbb{C}$ and $A, B \in \mathcal{B}(H)$. The linear map $\Phi: \mathcal{B}(H) \rightarrow \mathcal{B}(K)$ is positive if it preserves the operator order, i.e. if $A \in \mathcal{B}^{+}(H)$ then $\Phi(A) \in$ $\mathcal{B}^{+}(K)$. We write $\Phi \in \mathfrak{P}[\mathcal{B}(H), \mathcal{B}(K)]$. The linear map $\Phi: \mathcal{B}(H) \rightarrow \mathcal{B}(K)$ is normalized if it preserves the identity operator, i.e., $\Phi\left(1_{H}\right)=1_{K}$. We write $\Phi \in \mathfrak{P}_{N}[\mathcal{B}(H), \mathcal{B}(K)]$.

[^0]We observe that a positive linear map Φ preserves the order relation, namely

$$
A \leq B \text { implies } \Phi(A) \leq \Phi(B)
$$

and preserves the adjoint operation $\Phi\left(A^{*}\right)=\Phi(A)^{*}$.
If $\Phi \in \mathfrak{P}_{N}[\mathcal{B}(H), \mathcal{B}(K)]$ and $\alpha 1_{H} \leq A \leq \beta 1_{H}$, then $\alpha 1_{K} \leq \Phi(A) \leq \beta 1_{K}$.
If the map $\Psi: \mathcal{B}(H) \rightarrow \mathcal{B}(K)$ is linear, positive and $\Psi\left(1_{H}\right) \in \mathcal{B}^{++}(K)$, then by putting $\Phi=\Psi^{-1 / 2}\left(1_{H}\right) \Psi \Psi^{-1 / 2}\left(1_{H}\right)$ we get $\Phi \in \mathfrak{P}_{N}[\mathcal{B}(H), \mathcal{B}(K)]$, namely it is also normalized.

A real valued continuous function f on an interval I is said to be operator convex (concave) on I if

$$
f((1-\lambda) A+\lambda B) \leq(\geq)(1-\lambda) f(A)+\lambda f(B)
$$

for all $\lambda \in[0,1]$ and for every selfadjoint operators $A, B \in \mathcal{B}(H)$ whose spectra are contained in I.

The following Jensen's type result is well known [9, p. 22]:
Theorem 1 (Davis-Choi-Jensen's Inequality). Let $f: I \rightarrow \mathbb{R}$ be an operator convex function on the interval I and $\Phi \in \mathfrak{P}_{N}[\mathcal{B}(H), \mathcal{B}(K)]$, then for any selfadjoint operator A whose spectrum is contained in I we have

$$
\begin{equation*}
f(\Phi(A)) \leq \Phi(f(A)) . \tag{1}
\end{equation*}
$$

We observe that if $\Psi \in \mathfrak{P}[\mathcal{B}(H), \mathcal{B}(K)]$ with $\Psi\left(1_{H}\right) \in \mathcal{B}^{++}(K)$, then by taking $\Phi=\Psi^{-1 / 2}\left(1_{H}\right) \Psi \Psi^{-1 / 2}\left(1_{H}\right)$ in (1) we get

$$
f\left(\Psi^{-1 / 2}\left(1_{H}\right) \Psi(A) \Psi^{-1 / 2}\left(1_{H}\right)\right) \leq \Psi^{-1 / 2}\left(1_{H}\right) \Psi(f(A)) \Psi^{-1 / 2}\left(1_{H}\right) .
$$

If we multiply both sides of this inequality by $\Psi^{1 / 2}\left(1_{H}\right)$ we get the following Davis-Choi-Jensen's inequality for general positive linear maps

$$
\begin{equation*}
\Psi^{1 / 2}\left(1_{H}\right) f\left(\Psi^{-1 / 2}\left(1_{H}\right) \Psi(A) \Psi^{-1 / 2}\left(1_{H}\right)\right) \Psi^{1 / 2}\left(1_{H}\right) \leq \Psi(f(A)) \tag{2}
\end{equation*}
$$

Let $C_{j} \in \mathcal{B}(H), j=1, \ldots, k$ be contractions with

$$
\begin{equation*}
\sum_{j=1}^{k} C_{j}^{*} C_{j}=1_{H} \tag{3}
\end{equation*}
$$

The $\operatorname{map} \Phi: \mathcal{B}(H) \rightarrow \mathcal{B}(H)$ defined by [9, p. 19]

$$
\Phi(A):=\sum_{j=1}^{k} C_{j}^{*} A C_{j}
$$

is a normalized positive linear map on $\mathcal{B}(H)$.
For more results on inequlities for selfadjoint operators in Hilbert spaces, see $[2,3,6-8]$ and the references therein.

In this paper we obtain several operator inequalities providing upper bounds for the Davis-Choi-Jensen's Difference

$$
\Phi(f(A))-f(\Phi(A))
$$

for any convex function $f: I \rightarrow \mathbb{R}$, any selfadjoint operator A in H with the spectrum $\operatorname{Sp}(A) \subset I$ and any linear, positive and normalized map Φ : $\mathcal{B}(H) \rightarrow \mathcal{B}(K)$, where H and K are Hilbert spaces. Some examples for convex and operator convex functions are also provided.

2. Main Results

We use the following result that was obtained in [4].
Lemma 1. If $f:[a, b] \rightarrow \mathbb{R}$ is a convex function on $[a, b]$, then

$$
\begin{align*}
0 & \leq \frac{(b-t) f(a)+(t-a) f(b)}{b-a}-f(t) \tag{4}\\
& \leq(b-t)(t-a) \frac{f_{-}^{\prime}(b)-f_{+}^{\prime}(a)}{b-a} \leq \frac{1}{4}(b-a)\left[f_{-}^{\prime}(b)-f_{+}^{\prime}(a)\right]
\end{align*}
$$

for any $t \in[a, b]$.
If the lateral derivatives $f_{-}^{\prime}(b)$ and $f_{+}^{\prime}(a)$ are finite, then the second inequality and the constant $1 / 4$ are sharp.

We have:
Theorem 2. Let $f:[m, M] \rightarrow \mathbb{R}$ be a convex function on $[m, M]$ and A a selfadjoint operator with the spectrum $\operatorname{Sp}(A) \subset[m, M]$.

If $\Phi \in \mathfrak{P}_{N}[\mathcal{B}(H), \mathcal{B}(K)]$, then

$$
\begin{align*}
& \Phi(f(A))-f(\Phi(A)) \tag{5}\\
& \leq \frac{f_{-}^{\prime}(M)-f_{+}^{\prime}(m)}{M-m}\left(M 1_{K}-\Phi(A)\right)\left(\Phi(A)-m 1_{K}\right) \\
& \leq \frac{1}{4}(M-m)\left[f_{-}^{\prime}(M)-f_{+}^{\prime}(m)\right] 1_{K}
\end{align*}
$$

Proof. Utilizing the continuous functional calculus for a selfadjoint operator T with $0 \leq T \leq 1_{H}$ and the convexity of f on $[m, M]$, we have

$$
\begin{equation*}
f\left(m\left(1_{H}-T\right)+M T\right) \leq f(m)\left(1_{H}-T\right)+f(M) T \tag{6}
\end{equation*}
$$

in the operator order.
If we take in (6)

$$
0 \leq T=\frac{A-m 1_{H}}{M-m} \leq 1_{H}
$$

then we get

$$
\begin{align*}
& f\left(m\left(1_{H}-\frac{A-m 1_{H}}{M-m}\right)+M \frac{A-m 1_{H}}{M-m}\right) \tag{7}\\
& \quad \leq f(m)\left(1_{H}-\frac{A-m 1_{H}}{M-m}\right)+f(M) \frac{A-m 1_{H}}{M-m}
\end{align*}
$$

Observe that

$$
\begin{aligned}
& m\left(1_{H}-\frac{A-m 1_{H}}{M-m}\right)+M \frac{A-m 1_{H}}{M-m} \\
& =\frac{m\left(M 1_{H}-A\right)+M\left(A-m 1_{H}\right)}{M-m}=A
\end{aligned}
$$

and

$$
\begin{aligned}
& f(m)\left(1_{H}-\frac{A-m 1_{H}}{M-m}\right)+f(M) \frac{A-m 1_{H}}{M-m} \\
& =\frac{f(m)\left(M 1_{H}-A\right)+f(M)\left(A-m 1_{H}\right)}{M-m}
\end{aligned}
$$

and by (7) we get the following inequality of interest

$$
\begin{equation*}
f(A) \leq \frac{f(m)\left(M 1_{H}-A\right)+f(M)\left(A-m 1_{H}\right)}{M-m} . \tag{8}
\end{equation*}
$$

If we take the map Φ in (8), then we get

$$
\begin{aligned}
\Phi(f(A)) & \leq \Phi\left[\frac{f(m)\left(M 1_{H}-A\right)+f(M)\left(A-m 1_{H}\right)}{M-m}\right] \\
& =\frac{f(m) \Phi\left(M 1_{H}-A\right)+f(M) \Phi\left(A-m 1_{H}\right)}{M-m} \\
& =\frac{f(m)\left(M \Phi\left(1_{H}\right)-\Phi(A)\right)+f(M)\left(\Phi(A)-m \Phi\left(1_{H}\right)\right)}{M-m} \\
& =\frac{f(m)\left(M 1_{K}-\Phi(A)\right)+f(M)\left(\Phi(A)-m 1_{K}\right)}{M-m},
\end{aligned}
$$

which implies that
(9) $\quad \Phi(f(A))-f(\Phi(A))$

$$
\leq \frac{f(m)\left(M 1_{K}-\Phi(A)\right)+f(M)\left(\Phi(A)-m 1_{K}\right)}{M-m}-f(\Phi(A)) .
$$

Since $m 1_{K} \leq \Phi(A) \leq M 1_{K}$, then by using (4) for $a=m, b=M$ and the continuous functional calculus, we have

$$
\begin{align*}
& \frac{f(m)\left(M 1_{K}-\Phi(A)\right)+f(M)\left(\Phi(A)-m 1_{K}\right)}{M-m}-f(\Phi(A)) \tag{10}\\
& \leq \frac{f_{-}^{\prime}(M)-f_{+}^{\prime}(m)}{M-m}\left(M 1_{K}-\Phi(A)\right)\left(\Phi(A)-m 1_{K}\right) \\
& \leq \frac{1}{4}(M-m)\left[f_{-}^{\prime}(M)-f_{+}^{\prime}(m)\right] 1_{K} .
\end{align*}
$$

By making use of (9) and (10) we get the desired result (5).

Corollary 1. Let $f:[m, M] \rightarrow \mathbb{R}$ be an operator convex function on $[m, M]$ and A a selfadjoint operator with the spectrum $\operatorname{Sp}(A) \subset[m, M]$.

If $\Phi \in \mathfrak{P}_{N}[\mathcal{B}(H), \mathcal{B}(K)]$, then

$$
\begin{align*}
0 & \leq \Phi(f(A))-f(\Phi(A)) \tag{11}\\
& \leq \frac{f_{-}^{\prime}(M)-f_{+}^{\prime}(m)}{M-m}\left(M 1_{K}-\Phi(A)\right)\left(\Phi(A)-m 1_{K}\right) \\
& \leq \frac{1}{4}(M-m)\left[f_{-}^{\prime}(M)-f_{+}^{\prime}(m)\right] 1_{K}
\end{align*}
$$

We also have the following scalar inequality of interest:
Lemma 2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a convex function on $[a, b]$ and $t \in[0,1]$, then

$$
\begin{align*}
& 2 \min \{t, 1-t\}\left[\frac{f(a)+f(b)}{2}-f\left(\frac{a+b}{2}\right)\right] \tag{12}\\
& \leq(1-t) f(a)+t f(b)-f((1-t) a+t b) \\
& \leq 2 \max \{t, 1-t\}\left[\frac{f(a)+f(b)}{2}-f\left(\frac{a+b}{2}\right)\right]
\end{align*}
$$

The proof follows, for instance, by Corollary 1 from [5] for $n=2, p_{1}=$ $1-t, p_{2}=t, t \in[0,1]$ and $x_{1}=a, x_{2}=b$.
Theorem 3. Let $f:[m, M] \rightarrow \mathbb{R}$ be a convex function on $[m, M]$ and A a selfadjoint operator with the spectrum $\operatorname{Sp}(A) \subset[m, M]$.

If $\Phi \in \mathfrak{P}_{N}[\mathcal{B}(H), \mathcal{B}(K)]$, then

$$
\begin{align*}
& 2 {\left[\frac{f(m)+f(M)}{2}-f\left(\frac{m+M}{2}\right)\right] } \tag{13}\\
& \times\left(\frac{1}{2}(M-m) 1_{K}-\left|\Phi(A)-\frac{1}{2}(m+M) 1_{K}\right|\right) \\
& \leq \frac{f(m)\left(M 1_{K}-\Phi(A)\right)+f(M)\left(\Phi(A)-m 1_{K}\right)}{M-m}-f(\Phi(A)) \\
& \leq 2\left[\frac{f(m)+f(M)}{2}-f\left(\frac{m+M}{2}\right)\right] \\
& \quad \times\left(\frac{1}{2}(M-m) 1_{K}+\left|\Phi(A)-\frac{1}{2}(m+M) 1_{K}\right|\right)
\end{align*}
$$

and

$$
\begin{align*}
& 2\left[\frac{f(m)+f(M)}{2}-f\left(\frac{m+M}{2}\right)\right] \tag{14}\\
& \quad \times\left(\frac{1}{2}(M-m) 1_{K}-\Phi\left(\left|A-\frac{1}{2}(m+M) 1_{K}\right|\right)\right) \\
& \leq \frac{f(m)\left(M 1_{K}-\Phi(A)\right)+f(M)\left(\Phi(A)-m 1_{K}\right)}{M-m}-\Phi(f(A))
\end{align*}
$$

$$
\begin{aligned}
\leq & 2\left[\frac{f(m)+f(M)}{2}-f\left(\frac{m+M}{2}\right)\right] \\
& \times\left(\frac{1}{2}(M-m) 1_{K}+\Phi\left(\left|A-\frac{1}{2}(m+M) 1_{H}\right|\right)\right) .
\end{aligned}
$$

Proof. We have from (12) that

$$
\begin{align*}
& 2\left(\frac{1}{2}-\left|t-\frac{1}{2}\right|\right)\left[\frac{f(m)+f(M)}{2}-f\left(\frac{m+M}{2}\right)\right] \tag{15}\\
& \leq(1-t) f(m)+t f(M)-f((1-t) m+t M) \\
& \leq 2\left(\frac{1}{2}+\left|t-\frac{1}{2}\right|\right)\left[\frac{f(m)+f(M)}{2}-f\left(\frac{m+M}{2}\right)\right]
\end{align*}
$$

for all $t \in[0,1]$.
Utilizing the continuous functional calculus for a selfadjoint operator T with $0 \leq T \leq 1_{H}$ we get from (15) that

$$
\begin{align*}
& 2\left[\frac{f(m)+f(M)}{2}-f\left(\frac{m+M}{2}\right)\right]\left(\frac{1}{2} 1_{H}-\left|T-\frac{1}{2} 1_{H}\right|\right) \tag{16}\\
& \leq(1-T) f(m)+T f(M)-f((1-T) m+T M) \\
& \leq 2\left[\frac{f(m)+f(M)}{2}-f\left(\frac{m+M}{2}\right)\right]\left(\frac{1}{2} 1_{H}+\left|T-\frac{1}{2} 1_{H}\right|\right)
\end{align*}
$$

in the operator order.
If we take in (16)

$$
0 \leq T=\frac{A-m 1_{H}}{M-m} \leq 1_{H}
$$

then, like in the proof of Theorem 2, we get

$$
\begin{align*}
2 & {\left[\frac{f(m)+f(M)}{2}-f\left(\frac{m+M}{2}\right)\right] } \tag{17}\\
& \times\left(\frac{1}{2}(M-m) 1_{H}-\left|A-\frac{1}{2}(m+M) 1_{H}\right|\right) \\
\leq & \frac{f(m)\left(M 1_{H}-A\right)+f(M)\left(A-m 1_{H}\right)}{M-m}-f(A) \\
\leq & 2\left[\frac{f(m)+f(M)}{2}-f\left(\frac{m+M}{2}\right)\right] \\
& \times\left(\frac{1}{2}(M-m) 1_{H}+\left|A-\frac{1}{2}(m+M) 1_{H}\right|\right) .
\end{align*}
$$

Since $m 1_{K} \leq \Phi(A) \leq M 1_{K}$, then by writing the inequality (17) for $\Phi(A)$ instead of A we get (13).

If we take Φ in (17), then we get

$$
\begin{aligned}
2 & {\left[\frac{f(m)+f(M)}{2}-f\left(\frac{m+M}{2}\right)\right] } \\
& \times \Phi\left(\frac{1}{2}(M-m) 1_{H}-\left|A-\frac{1}{2}(m+M) 1_{H}\right|\right) \\
\leq & \Phi\left[\frac{f(m)\left(M 1_{H}-A\right)+f(M)\left(A-m 1_{H}\right)}{M-m}\right]-\Phi f(A) \\
\leq & 2\left[\frac{f(m)+f(M)}{2}-f\left(\frac{m+M}{2}\right)\right] \\
& \times \Phi\left(\frac{1}{2}(M-m) 1_{H}+\left|A-\frac{1}{2}(m+M) 1_{H}\right|\right)
\end{aligned}
$$

which is equivalent to (14).
Corollary 2. Let $f:[m, M] \rightarrow \mathbb{R}$ be an operator convex function on $[m, M]$ and A a selfadjoint operator with the spectrum $\operatorname{Sp}(A) \subset[m, M]$.

If $\Phi \in \mathfrak{P}_{N}[\mathcal{B}(H), \mathcal{B}(K)]$, then

$$
\begin{align*}
2 & {\left[\frac{f(m)+f(M)}{2}-f\left(\frac{m+M}{2}\right)\right] } \tag{18}\\
& \times\left(\frac{1}{2}(M-m) 1_{K}-\Phi\left(\left|A-\frac{1}{2}(m+M) 1_{H}\right|\right)\right) \\
\leq & \frac{f(m)\left(M 1_{K}-\Phi(A)\right)+f(M)\left(\Phi(A)-m 1_{K}\right)}{M-m}-\Phi(f(A)) \\
\leq & \frac{f(m)\left(M 1_{K}-\Phi(A)\right)+f(M)\left(\Phi(A)-m 1_{K}\right)}{M-m}-f(\Phi(A)) \\
\leq & 2\left[\frac{f(m)+f(M)}{2}-f\left(\frac{m+M}{2}\right)\right] \\
& \times\left(\frac{1}{2}(M-m) 1_{K}+\left|\Phi(A)-\frac{1}{2}(m+M) 1_{K}\right|\right)
\end{align*}
$$

We also have:
Corollary 3. Let $f:[m, M] \rightarrow \mathbb{R}$ be a convex function on $[m, M]$ and A a selfadjoint operator with the spectrum $\operatorname{Sp}(A) \subset[m, M]$.

If $\Phi \in \mathfrak{P}_{N}[\mathcal{B}(H), \mathcal{B}(K)]$, then

$$
\begin{align*}
\Phi(f(A))- & f(\Phi(A)) \leq 2\left[\frac{f(m)+f(M)}{2}-f\left(\frac{m+M}{2}\right)\right] \tag{19}\\
& \times\left(\frac{1}{2}(M-m) 1_{K}+\left|\Phi(A)-\frac{1}{2}(m+M) 1_{K}\right|\right) \\
\leq & 2(M-m)\left[\frac{f(m)+f(M)}{2}-f\left(\frac{m+M}{2}\right)\right] 1_{K}
\end{align*}
$$

Proof. From (9) we have

$$
\begin{aligned}
& \Phi(f(A))-f(\Phi(A)) \\
& \leq \frac{f(m)\left(M 1_{K}-\Phi(A)\right)+f(M)\left(\Phi(A)-m 1_{K}\right)}{M-m}-f(\Phi(A))
\end{aligned}
$$

and from (14) we have

$$
\begin{aligned}
& \frac{f(m)\left(M 1_{K}-\Phi(A)\right)+f(M)\left(\Phi(A)-m 1_{K}\right)}{M-m}-f(\Phi(A)) \\
& \leq 2\left[\frac{f(m)+f(M)}{2}-f\left(\frac{m+M}{2}\right)\right] \\
& \quad \times\left(\frac{1}{2}(M-m) 1_{K}+\left|\Phi(A)-\frac{1}{2}(m+M) 1_{K}\right|\right),
\end{aligned}
$$

which produce the desired result (19).
Remark 1. If $f:[m, M] \rightarrow \mathbb{R}$ is an operator convex function on $[m, M]$, A a selfadjoint operator with the spectrum $\operatorname{Sp}(A) \subset[m, M]$ and $\Phi \in$ $\mathfrak{P}_{N}[\mathcal{B}(H), \mathcal{B}(K)]$, then

$$
\begin{align*}
0 & \leq \Phi(f(A))-f(\Phi(A)) \tag{20}\\
& \leq 2\left[\frac{f(m)+f(M)}{2}-f\left(\frac{m+M}{2}\right)\right] \\
& \times\left(\frac{1}{2}(M-m) 1_{K}+\left|\Phi(A)-\frac{1}{2}(m+M) 1_{K}\right|\right) \\
& \leq 2(M-m)\left[\frac{f(m)+f(M)}{2}-f\left(\frac{m+M}{2}\right)\right] 1_{K} .
\end{align*}
$$

We also have [4]:
Lemma 3. Assume that $f:[a, b] \rightarrow \mathbb{R}$ is absolutely continuous on $[a, b]$. If f^{\prime} is K-Lipschitzian on $[a, b]$, then

$$
\begin{align*}
& |(1-t) f(a)+t f(b)-f((1-t) a+t b)| \tag{21}\\
\leq & \frac{1}{2} K(b-t)(t-a) \leq \frac{1}{8} K(b-a)^{2}
\end{align*}
$$

for all $t \in[0,1]$.
The constants $1 / 2$ and $1 / 8$ are the best possible in (21).
Remark 2. If $f:[a, b] \rightarrow \mathbb{R}$ is twice differentiable and $f^{\prime \prime} \in L_{\infty}[a, b]$, then

$$
\begin{align*}
& |(1-t) f(a)+t f(b)-f((1-t) a+t b)| \tag{22}\\
\leq & \frac{1}{2}\left\|f^{\prime \prime}\right\|_{[a, b], \infty}(b-t)(t-a) \leq \frac{1}{8}\left\|f^{\prime \prime}\right\|_{[a, b], \infty}(b-a)^{2},
\end{align*}
$$

where $\left\|f^{\prime \prime}\right\|_{[a, b], \infty}:=\operatorname{essup}_{t \in[a, b]}\left|f^{\prime \prime}(t)\right|<\infty$. The constants $1 / 2$ and $1 / 8$ are the best possible in (22).

We have:
Theorem 4. Let $f:[m, M] \rightarrow \mathbb{R}$ be a twice differentiable convex function on $[m, M]$ with $\left\|f^{\prime \prime}\right\|_{[m, M], \infty}:=\operatorname{essup}_{t \in[m, M]} f^{\prime \prime}(t)<\infty$ and A a selfadjoint operator with the spectrum $\operatorname{Sp}(A) \subset[m, M]$. If $\Phi \in \mathfrak{P}_{N}[\mathcal{B}(H), \mathcal{B}(K)]$, then

$$
\begin{align*}
& \Phi(f(A))-f(\Phi(A)) \tag{23}\\
& \leq \frac{1}{2}\left\|f^{\prime \prime}\right\|_{[m, M], \infty}\left(M 1_{K}-\Phi(A)\right)\left(\Phi(A)-m 1_{K}\right) \\
& \leq \frac{1}{8}\left\|f^{\prime \prime}\right\|_{[m, M], \infty}(M-m)^{2} 1_{K}
\end{align*}
$$

Proof. From (22) and the continuous functional calculus, we get

$$
\begin{align*}
0 & \leq \frac{f(m)\left(M 1_{H}-B\right)+f(M)\left(B-m 1_{H}\right)}{M-m}-f(B) \tag{24}\\
& \leq \frac{1}{2}\left\|f^{\prime \prime}\right\|_{[m, M], \infty}\left(M 1_{H}-B\right)\left(B-m 1_{H}\right) \\
& \leq \frac{1}{8}\left\|f^{\prime \prime}\right\|_{[m, M], \infty}(M-m)^{2} 1_{H}
\end{align*}
$$

where B is a selfadjoint operator with the spectrum $\operatorname{Sp}(B) \subset[m, M]$.
If we use (24) for $\Phi(A)$ we get

$$
\begin{align*}
0 & \leq \frac{f(m)\left(M 1_{K}-\Phi(A)\right)+f(M)\left(\Phi(A)-m 1_{K}\right)}{M-m}-f(\Phi(A)) \tag{25}\\
& \leq \frac{1}{2}\left\|f^{\prime \prime}\right\|_{[m, M], \infty}\left(M 1_{K}-\Phi(A)\right)\left(\Phi(A)-m 1_{K}\right) \\
& \leq \frac{1}{8}\left\|f^{\prime \prime}\right\|_{[m, M], \infty}(M-m)^{2} 1_{K}
\end{align*}
$$

Since

$$
\begin{aligned}
& \Phi(f(A))-f(\Phi(A)) \\
& \leq \frac{f(m)\left(M 1_{K}-\Phi(A)\right)+f(M)\left(\Phi(A)-m 1_{K}\right)}{M-m}-f(\Phi(A))
\end{aligned}
$$

hence by (25) we get (23).
Corollary 4. Let $f:[m, M] \rightarrow \mathbb{R}$ be an operator convex function on $[m, M]$ and A a selfadjoint operator with the spectrum $\operatorname{Sp}(A) \subset[m, M]$.

If $\Phi \in \mathfrak{P}_{N}[\mathcal{B}(H), \mathcal{B}(K)]$, then

$$
\begin{align*}
0 & \leq \Phi(f(A))-f(\Phi(A)) \tag{26}\\
& \leq \frac{1}{2}\left\|f^{\prime \prime}\right\|_{[m, M], \infty}\left(M 1_{K}-\Phi(A)\right)\left(\Phi(A)-m 1_{K}\right) \\
& \leq \frac{1}{8}\left\|f^{\prime \prime}\right\|_{[m, M], \infty}(M-m)^{2} 1_{K}
\end{align*}
$$

3. Some examples

We consider the exponential function $f(x)=\exp (\alpha x)$ with $\alpha \in \mathbb{R} \backslash\{0\}$. This function is convex but not operator convex on \mathbb{R}. If A is selfadjoint with $\operatorname{Sp}(A) \subset[m, M]$ for some $m<M$ and $\Phi \in \mathfrak{P}_{N}[\mathcal{B}(H), \mathcal{B}(K)]$, then by (5), (19) and (23) we have

$$
\begin{align*}
& \Phi(\exp (\alpha A))-\exp (\alpha \Phi(A)) \tag{27}\\
& \leq \alpha \frac{\exp (\alpha M)-\exp (\alpha m)}{M-m}\left(M 1_{K}-\Phi(A)\right)\left(\Phi(A)-m 1_{K}\right) \\
& \leq \frac{1}{4} \alpha(M-m)[\exp (\alpha M)-\exp (\alpha m)] 1_{K}
\end{align*}
$$

$$
\begin{align*}
& \Phi(\exp (\alpha A))-\exp (\alpha \Phi(A)) \tag{28}\\
& \leq 2\left[\frac{\exp (\alpha m)+f(\alpha M)}{2}-\exp \left(\alpha \frac{m+M}{2}\right)\right] \\
& \quad \times\left(\frac{1}{2}(M-m) 1_{K}+\left|\Phi(A)-\frac{1}{2}(m+M) 1_{K}\right|\right) \\
& \leq 2(M-m)\left[\frac{\exp (\alpha m)+f(\alpha M)}{2}-\exp \left(\alpha \frac{m+M}{2}\right)\right] 1_{K}
\end{align*}
$$

and

$$
\begin{align*}
& \Phi(\exp (\alpha A))-\exp (\alpha \Phi(A)) \tag{29}\\
& \leq \frac{1}{2} \alpha^{2}\left\{\begin{array}{l}
\exp (\alpha M) \text { if } \alpha>0 \\
\exp (\alpha m) \text { if } \alpha<0
\end{array} \times\left(M 1_{K}-\Phi(A)\right)\left(\Phi(A)-m 1_{K}\right)\right. \\
& \leq \frac{1}{8} \alpha^{2}(M-m)^{2}\left\{\begin{array}{l}
\exp (\alpha M) \text { if } \alpha>0 \\
\exp (\alpha m) \text { if } \alpha<0
\end{array} \times 1_{K} .\right.
\end{align*}
$$

The function $f(x)=-\ln x, x>0$ is operator convex on $(0, \infty)$. If A is selfadjoint with $\operatorname{Sp}(A) \subset[m, M]$ for some $0<m<M$ and $\Phi \in$ $\mathfrak{P}_{N}[\mathcal{B}(H), \mathcal{B}(K)]$, then by (11), (20) and (26) we have

$$
\begin{align*}
0 & \leq \ln (\Phi(A))-\Phi(\ln (A)) \tag{30}\\
& \leq \frac{1}{m M}\left(M 1_{V}-\Phi(A)\right)\left(\Phi(A)-m 1_{K}\right) \leq \frac{1}{4 m M}(M-m)^{2} 1_{K},
\end{align*}
$$

$$
\begin{align*}
0 & \leq \ln (\Phi(A))-\Phi(\ln (A)) \tag{31}\\
& \leq 2 \ln \left(\frac{m+M}{2 \sqrt{m M}}\right)\left(\frac{1}{2}(M-m) 1_{K}+\left|\Phi(A)-\frac{1}{2}(m+M) 1_{K}\right|\right) \\
& \leq 2(M-m) \ln \left(\frac{m+M}{2 \sqrt{m M}}\right) 1_{K}
\end{align*}
$$

and

$$
\begin{align*}
0 & \leq \ln (\Phi(A))-\Phi(\ln (A)) \tag{32}\\
& \leq \frac{1}{2 m^{2}}\left(M 1_{K}-\Phi(A)\right)\left(\Phi(A)-m 1_{K}\right) \\
& \leq \frac{1}{8 m^{2}}(M-m)^{2} 1_{K}
\end{align*}
$$

We observe that if $M>2 m$ then the bound in (30) is better than the one from (32). If $M<2 m$, then the conclusion is the other way around.

The function $f(x)=x \ln x, x>0$ is operator convex on $(0, \infty)$. If A is selfadjoint with $\operatorname{Sp}(A) \subset[m, M]$ for some $0<m<M$ and $\Phi \in$ $\mathfrak{P}_{N}[\mathcal{B}(H), \mathcal{B}(K)]$, then by $(11),(20)$ and (26) we have

$$
\begin{align*}
0 & \leq \Phi(A \ln (A))-\Phi(A) \ln (\Phi(A)) \tag{33}\\
& \leq \frac{\ln (M)-\ln (m)}{M-m}\left(M 1_{K}-\Phi(A)\right)\left(\Phi(A)-m 1_{K}\right) \\
& \leq \frac{1}{4}(M-m)[\ln (M)-\ln (m)] 1_{K},
\end{align*}
$$

$$
\begin{align*}
0 \leq & \Phi(A \ln (A))-\Phi(A) \ln (\Phi(A)) \tag{34}\\
\leq & 2\left[\frac{m \ln (m)+M \ln (M)}{2}-\left(\frac{m+M}{2}\right) \ln \left(\frac{m+M}{2}\right)\right] \\
& \times\left(\frac{1}{2}(M-m) 1_{K}+\left|\Phi(A)-\frac{1}{2}(m+M) 1_{K}\right|\right) \\
\leq & 2(M-m)\left[\frac{m \ln (m)+M \ln (M)}{2}-\left(\frac{m+M}{2}\right) \ln \left(\frac{m+M}{2}\right)\right] 1_{K}
\end{align*}
$$

and

$$
\begin{align*}
0 & \leq \Phi(A \ln (A))-\Phi(A) \ln (\Phi(A)) \tag{35}\\
& \leq \frac{1}{2 m}\left(M 1_{K}-\Phi(A)\right)\left(\Phi(A)-m 1_{K}\right) \leq \frac{1}{8 m}(M-m)^{2} 1_{K}
\end{align*}
$$

Consider the power function $f(x)=x^{r}, x \in(0, \infty)$ and r a real number. If $r \in(-\infty, 0] \cup[1, \infty)$, then f is convex and for $r \in[-1,0] \cup[1,2]$ is operator convex. If we use the inequalities (5), (19) and (23) we have for $r \in(-\infty, 0] \cup[1, \infty)$ that

$$
\begin{align*}
& \Phi\left(A^{r}\right)-(\Phi(A))^{r} \tag{36}\\
& \leq r \frac{M^{r-1}-m^{r-1}}{M-m}\left(M 1_{K}-\Phi(A)\right)\left(\Phi(A)-m 1_{K}\right) \\
& \leq \frac{1}{4} r(M-m)\left(M^{r-1}-m^{r-1}\right) 1_{K}
\end{align*}
$$

$$
\begin{align*}
& \Phi\left(A^{r}\right)-(\Phi(A))^{r} \tag{37}\\
& \leq 2\left[\frac{m^{r}+M^{r}}{2}-\left(\frac{m+M}{2}\right)^{r}\right] \\
& \times\left(\frac{1}{2}(M-m) 1_{K}+\left|\Phi(A)-\frac{1}{2}(m+M) 1_{K}\right|\right) \\
& \leq 2(M-m)\left[\frac{m^{r}+M^{r}}{2}-\left(\frac{m+M}{2}\right)^{r}\right] 1_{K}
\end{align*}
$$

and

$$
\begin{align*}
& \Phi\left(A^{r}\right)-(\Phi(A))^{r} \tag{38}\\
& \leq \frac{1}{2} r(r-1)\left\{\begin{array}{l}
M^{r-2} \text { for } r \geq 2 \\
m^{r-2} \text { for } r \in(-\infty, 0] \cup[1,2)
\end{array}\right. \\
& \times\left(M 1_{K}-\Phi(A)\right)\left(\Phi(A)-m 1_{K}\right) \\
& \leq \frac{1}{8} r(r-1)(M-m)^{2}\left\{\begin{array}{l}
M^{r-2} \text { for } r \geq 2 \\
m^{r-2} \text { for } r \in(-\infty, 0] \cup[1,2)
\end{array}\right.
\end{align*}
$$

where A is selfadjoint with $\operatorname{Sp}(A) \subset[m, M]$ for some $0<m<M$ and $\Phi \in \mathfrak{P}_{N}[\mathcal{B}(H), \mathcal{B}(K)]$.

If $r \in[-1,0] \cup[1,2]$, then we also have $0 \leq \Phi\left(A^{r}\right)-(\Phi(A))^{r}$ in the inequalities (36)-(38).

For $r=-1$ we have the inequalities

$$
\begin{align*}
0 & \leq \Phi\left(A^{-1}\right)-(\Phi(A))^{-1} \tag{39}\\
& \leq \frac{M+m}{M^{2} m^{2}}\left(M 1_{K}-\Phi(A)\right)\left(\Phi(A)-m 1_{K}\right) \\
& \leq \frac{1}{4}(M-m)^{2} \frac{M+m}{M^{2} m^{2}} 1_{K}
\end{align*}
$$

$$
\begin{align*}
0 & \leq \Phi\left(A^{-1}\right)-(\Phi(A))^{-1} \tag{40}\\
& \leq \frac{(M-m)^{2}}{m M(m+M)}\left(\frac{1}{2}(M-m) 1_{K}+\left|\Phi(A)-\frac{1}{2}(m+M) 1_{K}\right|\right) \\
& \leq \frac{(M-m)^{3}}{m M(m+M)} 1_{K}
\end{align*}
$$

and

$$
\begin{align*}
0 & \leq \Phi\left(A^{-1}\right)-(\Phi(A))^{-1} \tag{41}\\
& \leq \frac{1}{m^{3}}\left(M 1_{K}-\Phi(A)\right)\left(\Phi(A)-m 1_{K}\right) \leq \frac{1}{4 m^{3}}(M-m)^{2} 1_{K}
\end{align*}
$$

where A is selfadjoint with $\operatorname{Sp}(A) \subset[m, M]$ for some $0<m<M$ and $\Phi \in \mathfrak{P}_{N}[\mathcal{B}(H), \mathcal{B}(K)]$.

4. Conclusion

In this paper we obtained several operator inequalities providing upper bounds for the celebrated Davis-Choi-Jensen's Difference for any convex function $f: I \rightarrow \mathbb{R}$, any selfadjoint operator A in H with the spectrum $\operatorname{Sp}(A) \subset I$ and any linear, positive and normalized map $\Phi: \mathcal{B}(H) \rightarrow \mathcal{B}(K)$, where H and K are Hilbert spaces. Some examples for fundamental convex and operator convex functions of interest, to ilustrate the main results, were also provided.

References

[1] M.D. Choi, Positive linear maps on C^{*}-algebras, Canadian Journal of Mathematics, 24 (1972), 520-529.
[2] S.S. Dragomir, Some reverses of the Jensen inequality for functions of selfadjoint operators in Hilbert spaces, Journal of Inequalities and Applications, 2010 (2010), Article ID: 496821, 15 pages.
[3] S.S. Dragomir, Operator Inequalities of the Jensen, Čebyšev and Grüss Type, Springer Briefs in Mathematics, Springer, New York, 2012.
[4] S.S. Dragomir, Bounds for the deviation of a function from the chord generated by its extremities, Bulletin of the Australian Mathematical Society, 78 (2) (2008), 225-248.
[5] S.S. Dragomir, Bounds for the normalised Jensen functional, Bulletin of the Australian Mathematical Society, 74 (3) (2006), 471-478.
[6] S.S. Dragomir, Operator Inequalities of the Jensen, Čebyšev and Grüss Type, Springer Briefs in Mathematics, Springer, New York, 2012.
[7] S.S. Dragomir, Hermite-Hadamard's type inequalities for operator convex functions, Applied Mathematics and Computation, 218 (3) (2011), 766-772.
[8] S.S. Dragomir, Some Hermite-Hadamard type inequalities for operator convex functions and positive maps, Spec. Matrices 7 (2019), 38-51. Preprint RGMIA Res. Rep. Coll. 19 (2016), Article 80. [Online http://rgmia.org/papers/v19/v19a80.pdf]
[9] J. Pečarić, T. Furuta, J. Mićić Hot and Y. Seo, Mond-Pečarić Method in Operator Inequalities : Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Monographs in Inequalities 1, Element, Zagreb, 2005.

Silvestru Sever Dragomir

${ }^{1}$ Applied Mathematics Research Group, ISILC
Victoria University, PO Box 14428
Melbourne City, MC 8001
Australia
${ }^{2}$ School of Computer Science \& Applied Mathematics
University of the Witwatersrand, Private Bag 3 Johannesburg 2050
South Africa
E-mail address: sever.dragomir@ajmaa.org

[^0]: 2020 Mathematics Subject Classification. Primary: 47A63; Secondary: 47A99.
 Key words and phrases. Selfadjoint bounded linear operators, Functions of operators, Operator convex functions, Jensen's operator inequality, Linear, positive and normalized map.
 Full paper. Received 29 May 2023, accepted 7 March 2024, available online 19 March 2024.

