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Operator upper bounds for Davis-Choi-Jensen’s
difference in Hilbert spaces

SILVESTRU SEVER DRAGOMIR!?

ABSTRACT. In this paper we obtain several operator inequalities pro-
viding upper bounds for the Davis-Choi-Jensen’s Difference

®(f(A) - f(2(4)
for any convex function f : I — R, any selfadjoint operator A in H with
the spectrum Sp (A) C I and any linear, positive and normalized map
®: B(H) — B(K), where H and K are Hilbert spaces. Some examples
for convex and operator convex functions are also provided.

1. INTRODUCTION

Let H be a complex Hilbert space and B(H), the Banach algebra of
bounded linear operators acting on H. We denote by By, (H) the semi-space
of all selfadjoint operators in B (H). We denote by B (H) the convex cone
of all positive operators on H and by B™* (H) the convex cone of all positive
definite operators on H.

Let H, K be complex Hilbert spaces. Following [1] (see also [9, p. 18])
we can introduce the following definition.

Definition 1. A map ® : B(H) — B(K) is linear if it is additive and
homogeneous, namely

® (A + uB) = A® (A) + ud (B)

for any A\, p € C and A, B € B(H). The linecar map ® : B(H) — B(K) is
positive if it preserves the operator order, i.e. if A € BT (H) then <I>( ) €
Bt (K).We write ® € B[B(H),B(K)]. The linear map ® : B (H) — B (K)
is normalized if it preserves the identity operator, i.e., ® (1) = 1x. We write

e Py [B(H),B(K)].

2020 Mathematics Subject Classification. Primary: 47A63; Secondary: 47A99.

Key words and phrases. Selfadjoint bounded linear operators, Functions of operators,
Operator convex functions, Jensen’s operator inequality, Linear, positive and normalized
map.

Full paper. Received 29 May 2023, accepted 7 March 2024, available online 19 March
2024.

(©2024 Mathematica Moravica

39



40 OPERATOR UPPER BOUNDS

We observe that a positive linear map ® preserves the order relation,

namely
A < B implies ® (A) < ®(B)

and preserves the adjoint operation ® (A4*) = ® (A)*.
If®ePn[B(H),B(K)] and aly < A < fBly, then alg < ®(A) < flk.

If the map ¥ : B(H) — B(K) is linear, positive and ¥ (15) € BT (K),
then by putting ® = U2 (1) WU —1/2 (1) we get ® € Py [B(H), B (K)],
namely it is also normalized.

A real valued continuous function f on an interval [ is said to be operator
convex (concave) on I if

F(A=XA)A+AB) < (2)(1=A) f(A)+Af(B)

for all A € [0,1] and for every selfadjoint operators A, B € B(H) whose
spectra are contained in I.
The following Jensen’s type result is well known [9, p. 22|

Theorem 1 (Davis-Choi-Jensen’s Inequality). Let f : I — R be an operator
convex function on the interval I and ® € Py [B(H),B(K)], then for any
selfadjoint operator A whose spectrum is contained in I we have

(1) (@A) <2(f(A4).

We observe that if ¥ € R [B(H),B(K)] with ¥ (1) € BT" (K), then
by taking ® = U—1/2 (1) UU~1/2 (1) in (1) we get

702 (1) W ()92 (1)) < U2 (1) W (F (4) 92 (1),

If we multiply both sides of this inequality by ¥'/2 (1) we get the following
Davis-Choi-Jensen’s inequality for general positive linear maps

(2) W2 () £ (02 (L) (A) U2 (1)) 92 (1) < W (F (4)).
Let C; € B(H), j =1,...,k be contractions with

k
(3) ZCJ*CJ =1g.
j=1
The map ¢ : B(H) — B (H) defined by [9, p. 19]
k
O (A):=) CjAC,
j=1

is a normalized positive linear map on B (H).

For more results on inequlities for selfadjoint operators in Hilbert spaces,
see [2,3,6-8| and the references therein.

In this paper we obtain several operator inequalities providing upper
bounds for the Davis-Choi-Jensen’s Difference

o (f(A) - f(2(4))
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for any convex function f : I — R, any selfadjoint operator A in H with
the spectrum Sp (A) C I and any linear, positive and normalized map ® :
B(H) — B(K), where H and K are Hilbert spaces. Some examples for
convex and operator convex functions are also provided.

2. MAIN RESULTS

We use the following result that was obtained in [4].

Lemma 1. If f : [a,b] — R is a convez function on [a,b], then

fL(b) = £ (a)
b—a

<(b-1)(t-a) <

t)
1 / !
Lo a) [1 ()~ (@)
for any t € [a,b].

If the lateral derivatives f' (b) and f (a) are finite, then the second in-
equality and the constant 1/4 are sharp.

We have:

Theorem 2. Let f : [m, M] — R be a convex function on [m,M] and A a
selfadjoint operator with the spectrum Sp (A) C [m, M].
If @ € Py [B(H),B(K)), then

5 @A) - (e (A)
< FODZ L0 (e — @ () (@(4) - i)

< 3 (M —m) [£2 (M) = 71 (m)] 11

Proof. Utilizing the continuous functional calculus for a selfadjoint operator
T with 0 < T < 1y and the convexity of f on [m, M|, we have
(6) fm Qg =T)+MT) < f(m) Ay —T)+ f(M)T

in the operator order.
If we take in (6)

<T= <1
0 M—m —
then we get

A—mly A—mly
7 1y — M
o () )
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Observe that

A—ml A—ml
m<1H mH)+M miH

M—-m M-m
_m(MlH—A)+M(A—m1H) 4
= U —m =

and
A— mlH A— mlH
1g — M
oy (1= S g o)
_ f(m)(M1y —A) + f (M) (A—mly)
M —m
and by (7) we get the following inequality of interest

f(m)(Mlg —A)+ f (M) (A—mlg)
M —m
If we take the map ® in (8), then we get

 m) (M1 — A) + £ (M) (A= mip)

F ) (15— 4) £ 30) 8 (A — ]
) (D (L)~ () (01) (8 (4) — i (1)
1) M1~ 0 4) o ) - mi)

(8) f(4) <

o(f(A) <@

which implies that

9)  2(f(A) - f(2(4))

< £m (O~ @A) + 7 AN @A) i) _ gy

Since mlg < ® (A) < M1k, then by using (4) for a = m, b = M and the
continuous functional calculus, we have

fL (M) = fi (m)
M—m

< 7 (M —m) [fL(M) = fi (m)] 1k

By making use of (9) and (10) we get the desired result (5). O

(10)

IN

(M1g — @ (A)) (®(A) —mlk)
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Corollary 1. Let f : [m, M] — R be an operator convex function on [m, M]
and A a selfadjoint operator with the spectrum Sp (A) C [m, M].
1@ € P [B(H),B(K)], then

1) 0<(f(4) - f(@(A))
_ L)~ f (m)
- M —m
< O —m) [f2 (M) = £} (m)] 1

We also have the following scalar inequality of interest:

(M1g — @ (A)) (®(A) —mlk)

Lemma 2. Let f : [a,b] — R be a convex function on [a,b] and t € [0,1],
then

(12) 2min{t,1t}[ ();ff()f<a+b>]
<1 —1t)f(a)+tf(b)—f((1—1t)a+tb)

f
§2max{t,1—t}{ (a ;f(b) f(a;bﬂ.

The proof follows, for instance, by Corollary 1 from [5] for n = 2, p; =
1—t,pp=t,te]0,1] and 1 = a, z2 = b.

Theorem 3. Let f: [m, M] — R be a convex function on [m,M] and A a
selfadjoint operator with the spectrum Sp (A) C [m, M].
If® Py [B(H),B(K)|, then

(13) 2 [f(me(M) _f<m+M>]

2

y (;(M—m)lK—CDQA—;(m+M)1KD>

o Fm) (Mg —®(A)) + f (M) (®(A) —mlk)
- M—-—m

—®(f(4))
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<o L sOn _y (meaty

(Lor-mer o (ja- Lo s anm)).

Proof. We have from (12) that

(15) 2<;P;D:fWU;fwﬁf<m;M>]

< tf (M) = f((1—t)m+tM)
e e
for all t € [0,1].

Utilizing the continuous functional calculus for a selfadjoint operator T
with 0 < T < 1y we get from (15) that

o o[ (2] (4 fr 3,

<A=-T)f(m)+Tf(M)—f(QA-T)m+TM)

[0 (20)] G -],

A
=
|
g
2
+

in the operator order.
If we take in (16)

A—ml H
M—-m
then, like in the proof of Theorem 2, we get

(17) 2[f<m>+f()_f<m+M)]

0<T =

§1H7

2
x(;m4—mﬂH—P—;On+MﬂHD

f(WJUW1H-—ﬁ;+fTAD(A—ﬂnhﬁ
Q{M__}?mwﬂ

2 2
dl

Since mlg < ® (A) < M1k, then by writing the inequality (17) for ® (A)
instead of A we get (13).

IN

- f(4)

IN

(M—m)lH—f—‘A—;(m—i-M)lHD.

N |
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If we take @ in (17), then we get

o[H R s ()]

><c1><;(M—m)1H—’A—;<m+M)1H'>

<o [L QM=)+ FOD A m] g
)

1 1
X(I)<2(M_m)1H+ ’A—2<m—|—M)1HD,
which is equivalent to (14). O

Corollary 2. Let f : [m, M] — R be an operator convez function on [m, M]
and A a selfadjoint operator with the spectrum Sp (A) C [m, M].
If © € Bn [B(H),B(K)], then

SR [{DES CURyIEES )

2 2

« (;(M—m)lK—cqu—;(m+M)1HD>
f(m) (Mlg — @ (A) + f (M) (P(A) —mlk)

< Juss @ (f(4)
f(m) + f (M) m+ M
oy ()

1 1
We also have:

Corollary 3. Let f: [m,M] — R be a convez function on [m,M] and A a
selfadjoint operator with the spectrum Sp (A) C [m, M].

(19) aufm»—f@wm>g2V“W;fwﬁ_f<mzwg]

x <;(M—m)1K+’CI>(A)—;(m+M)1K‘>
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Proof. From (9) we have
®(f(A)) = f(2(4))

and from (14) we have
f(m) (M1g —®(A) + f (M) (®(A) —mlk)
M—m
f(m) (M) m+ M
<[P ()
< (M —m) 1+ '@(A)—;(m+M)1KD
which produce the desired result (19). O

Remark 1. If f : [m, M] — R is an operator convex function on [m, M],
A a selfadjoint operator with the spectrum Sp(A4) C [m,M] and ® €

B [B(H),B(K)], then
(20) 0<®(f(A)—f(®(A))

oL san _y (meary

y <;(M—m)1K+ ‘@(A) —%(m+M) 1KD
gﬂM—mﬂfmﬁj*)f<m+Mﬂ1K
We also have [4]:

Lemma 3. Assume that f : [a,b] — R is absolutely continuous on [a,b]. If
f" is K-Lipschitzian on [a,b], then

(21) (L =28) f(a) +tf (b) = F((1 —t)a+1b)]

< K(b—t)(t—a)géK(b—a)Q

DN |

for all t € [0,1].
The constants 1/2 and 1/8 are the best possible in (21).

Remark 2. If f : [a,b] — R is twice differentiable and f” € L, [a,b], then
(22) (1—=1t) f(a)+tf(b) — f((1—1t)a+th)]
1 1 )
2 60000 L[ -

where || f”[[, 4] 00 = €sSUP;ca ) [f” (£)] < 0o. The constants 1/2 and 1/8 are
the best possible in (22).
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We hayve:

Theorem 4. Let f: [m, M] — R be a twice differentiable convex function
on [m, M] with || ||, a),00 °= €85UPsepm,an [ (¢) < 00 and A a selfadjoint
operator with the spectrum Sp (A) C [m, M]. If ® € Py [B(H),B(K)], then

(23) ® (f (4) — f(@(A))
Hf”H[m Moo (M1 = @ (A)) (@ (4) = mlk)

| /\

2
1
8

IN

" 2
Proof. From (22) and the continuous functional calculus, we get

oy 0g IO DO B )

1
=3 1"t 00 M1 = B) (B = m1y)
<5l

[ W a0 (M = m)" L

where B is a selfadjoint operator with the spectrum Sp (B) C [m, M].
If we use (24) for ® (A) we get

f(m) (Mlg —®(A)) + f (M) (@ (A) —mlk)

(25) 0< T — f(®(4))
< o 18 g (M1 — @ (4)) (@ (4) L)
< 15 a0 OF = )% L
Since

O (f(A) - f(2(4)

hence by (25) we get (23). O

Corollary 4. Let f : [m, M] — R be an operator convez function on [m, M]
and A a selfadjoint operator with the spectrum Sp (A) C [m, M].

If ® e Py [B(H),B(K)], then
(26) 0<®(f(A) - f(®(A4)
< g (7L = 8 () (@ (4) = L)

1
< 1 g OV = )2
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3. SOME EXAMPLES

We consider the exponential function f (z) = exp (ax) with o € R\ {0}.
This function is convex but not operator convex on R. If A is selfadjoint
with Sp (4) C [m, M] for some m < M and ® € Py [B(H),B(K)], then
by (5), (19) and (23) we have

(27) D (exp (aA)) — exp (P (A))

exp (aM) — exp (am)
M —m

IN

(M1g — @ (A)) (®(A) —mlk)

IN
N

o (M — m)[exp (aM) — exp (am)] L,

(28) @ (exp(ad)) —exp (ad (4))

exp (am)2+ flad) (am ; M>]

|

y <;(M—m)1K+‘<I>(A)—;(m—FM)lKD

o [P IO (Y],

and

(29) @ (exp(ad)) —exp (a® (A))

1 exp (aM) if a>0
< §a2 X (Mlg —® (A))(®(A) —mlg)
exp (am) if a <0
1 exp (aM) if & >0
< §a2 (M —m)? X 1.
exp (am) if @ <0
The function f(z) = —Inz, x > 0 is operator convex on (0,00). If

A is selfadjoint with Sp (A) C [m, M] for some 0 < m < M and ® €
B [B(H),B(K)], then by (11), (20) and (26) we have

(30)  0<In(®(A) - (In(A))

(M1y — ®(A4)) (¢ (A) —mlk) <

o 2
< gt M —m) L,

< -
- mM
(31) 0<In(®(A4))—P(In(4))

<o (PR (01— e+ [0 ()~ § (m+00) 1)

<2(M —m)ln (;”\/%) 1x
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and

(32) 0 < In (® (4)) — @ (In (4))
< 5y (Ml — ®(4)) (2 (4) ~ mlg)
> 8;2 (M - m)2 1](.

We observe that if M > 2m then the bound in (30) is better than the one
from (32). If M < 2m, then the conclusion is the other way around.

The function f(x) = zlnz, > 0 is operator convex on (0,00). If
A is selfadjoint with Sp (A) C [m, M] for some 0 < m < M and ® €
By [B(H),B(K)], then by (11), (20) and (26) we have

(33) 0<P(Aln(A)) —P(A)In(P(A))
In (M) —In(m)
M —m
(M —m)[In (M) —1In(m)] 1k,

IN

(M1g — @ (A)) (®(A) —mlk)

1
<

|

(34)
0<®(AIn(A)) — @ (A)In(P(A))

2{mln(m)gM1n(M) B <m+M>ln<m+M>]

IN

2
. <;<M—m)1K+‘<I><A>—;<m+M>1KD

<2(M—m) [mln(m)—;Mln(M) B <mJ;M)1n<mJ;M>} L

(35) 0< ®(Aln(A) — @ (A)In (P (A))

< i (Mlx — @ (A)) (@ (A) — mig) < 8im (M —m)? 1.

Consider the power function f (x) = 2", z € (0,00) and r a real number.
If r € (—00,0] U[1,00), then f is convex and for r € [—1,0] U [1,2] is
operator convex. If we use the inequalities (5), (19) and (23) we have for
r € (—00,0] U1, 00) that
(36) ® (A7) — (@ (4))

< M om (M1g — @ (A)) (@ (A) — mlk)
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(37) o (A7) — (2 (4))"

<2[m +M _<m+M>]
- 2 2

2

o[ (2.

« <;(M—m)1K+’<I>(A)—1(m+M)1KD

2 2

m"2 for r € (—o0,0] U[L,2)

X (Mlg — @ (A)) (®(A) —mlk)
1 M2 forr>2
m"2 for r € (—o0,0] U [1,2)

where A is selfadjoint with Sp (4) C [m, M] for some 0 < m < M and
& € Fx [B(H), B (K)].

If » € [-1,0] U [1,2], then we also have 0 < ® (A") — (P (A))" in the
inequalities (36)-(38).

For » = —1 we have the inequalities
(39) 0<® (A7) —(@(A)~"
M+m
< 32z (M1 —®(A)) (P (A) —mlg)
]. 2 M + m
< gWM=ml gt

(40)  0<@ (AT —(®(4)""

(M -m)
= mM (m+ M)

(1) 0<@(a7) - (@(a)

< (Mg — @ (A)) (B (A) — mlg) < ¢ (M —m)’ L,

where A is selfadjoint with Sp (4) C [m, M] for some 0 < m < M and
e Pn[B(H),B(K)
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4. CONCLUSION

In this paper we obtained several operator inequalities providing upper
bounds for the celebrated Davis-Choi-Jensen’s Difference for any convex
function f : I — R, any selfadjoint operator A in H with the spectrum
Sp (A) C I and any linear, positive and normalized map ¢ : B(H) — B (K),
where H and K are Hilbert spaces. Some examples for fundamental convex
and operator convex functions of interest, to ilustrate the main results, were
also provided.
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