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THE PRE-LIMIT OF A REAL-VALUED
FUNCTION

Dimitrije Hajdukovié

Abstract. 1. In [1] S. Banach shown the existence of very known

Banach linear shift-invariant functionals defined on the real vector space
of all bounded real-valued functions on the semi-axis ¢ > 0 and espe-
cially on the space of all real bounded sequences. In [2] G. G. Lorentz
defined, by Banach shift-invariant functionals, the class of almost con-
vergent sequences. In [3] almost convergence was extended to real-valued
functions on the semi-axis t > 0. In [4] almost convergence was extended
to bounded sequences in a real normed space.
2. This paper is devoted to a class of functions defined on the semi-axis
t > 0 which are near to the functions f having lim; .o f(¢). The paper
is organized as follows. First, for a sufficiently large a (written a > ag for
some ag) by §2 we denote the real vector space of all functions defined on
[0, +00) and bounded on [a, +00). Next, we will show the existence of a
family of functionals defined on the space €. By these functionals we de-
fine the notion of pre-limit of a function f € 2 and investigate the family
of all these functions. Further, we will show a theorem characterizing a
function having the pre-limit. Also we show another theorem which is
very applicable, though it contains a new restrictive condition. Finally,
to make the idea of pre-limit a little clearer, we give several examples
functions having pre-limit.

1. A new family of functionals

(1)

Let us choose a double sequence z = (§7), ¢ > 0 (k = 1,2,... ,n
n=12...

th+£k

n—007}

}, fen

p(f) = hm { lim —

corresponds to z.
The functional p is seen to by real-valued and it satisfies the conditions

3

) and fix it. Then the functional p, = p defined on the space 2 by

p(f) =0, plaf) = lalp(f), p(f +g) < p(f) +p(9) (a € R; f,g €Q);
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that is, p is a symmetric convex functional on the space 2. According to a
corollary of Hahn-Banach theorem (see also [5], Exercise 2, p. 187) there exists
a nontrifial linear functional L on the space {2 such that
(2) \L(f) < p(f), fef

Next let € be the space of all functions f € 1 having tlim f@t)y =0.
Also, for some s € R (s # 0) let us define the function g by g(t) = s, t > 0.
Then g € Q\Qp and p(g) = |s| > 0. Notice also that clearly we have
(3) p(f)=L{f)=0, fe

Now, to extend the functiolnal L to the space spanned by € and {g}
(that is, the space Qg U {g}), the value L(g) we can choose arbitrarily in the
segment [—p(g),p(g)]; that is, we can extend the functional L in a such way
that it has distinct values at g € ). In other words, the functional L satisfying
the above coriditions is not unique.

Indeed, we can take the value L(g) arbitrarily in the segment [k, K],
where

k= fsgo{w(f +9)}, K= fiergo{p(f +9)}

since L(f) = 0, Vf € Qq (see, for example, [6], p. 222). Further, by (1), we
have p(f + g) = p(g) since
Jim [£(2) + 9(t)] = lim g(t) = s.
So, we can take the value L(g) arbitrarily in the segment [—p(g), p(g)].
We shall now show the following lemma.

Lemma 1.17. Let X be a real linear space andp: X — R o functional
satisfying the conditions

p(z) 2 0, plaz) = lalp(z), p(z +y) < p(z) +p(y) (a € R; z,y € X).
Then for any zo € X there exists a linear functional L on X such that
(Vz € X)|L(z)| < p(z), L(zo) = p(zo)-

Proof. Cleraly, the set Xog = {azy, o € R} is a subspace of the space
X and Ly, defined by ‘

Lo(azo) = ap(ze) (a € R)
is a linear functional on Xj satisfying the condition _
| Lo(azo)| = |ap(zo)| = lelp(zo) = plezo) (a € R)

By a version of Hahn-Banach theorem (see [5], theorem 11.2, p. 181) there
exists a linear functional L on X extending L and satisfying the condition

(Ve € X) |L{z)| < p(z).
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Also we have
L(zo) = Lo(zo) = 1 - p(zo) = p(20),
which completes the proof.

Denoting now by II(*) the family of functionals satisfying the above
conditions, for each s € R, we obtain

(4) (VL eTI®) Lz —s) = 0iff po(f =) =0, feQ.

Indeed, ps(f — s) = 0 clearly implies L(f — s) = 0, VL € II®). Also, the

implication

(VLel®) L(f-s)=0=p(f—s) =0
is equivalent to the implication

pe(f —5)> 0= (3L eT®) L(f —5)#0
which, by the lemma proved before, is valid. So, (4) must be true.

Because the sequence z = (£f), £ > 0 contained in (1) is arbitrary, we
have shown the following theorem.

Theorem 1.1. For any sequence z = (£7), & > 0 (k= 1,2,... ,n;
n=1,2,...) there exists a family I®) of nontrivial functionals L defined on
the space ) such that for all a,b € R, all s € R and all f,g € Q the following
assertions are valid

1° L(af + bg) = aL(f) + bL(g),
2° [L(f)| < p=(f),
3° (VL € I)) L(f = s) = 0 iff po(f — 5) = 0.

2. The pre-limit of a real-valued function

Having the resuits obtained before we can proceed to investigation the
family of all functions f € 2 to which all functionals from the theorem 1
assign same value. )

Definition 2.2. Let f € Q. Then f(t) has pre-limit s as t — +oo if
for at least one family II®) and for at least one number s = s the following
assertion
(5) (VL e I® L(f -s) =0
is valid.

Notice that, by the definiton 1, in general, it is possible that a function
f € § has distinct pre-limits which are determined by distinct sequences
x = (). Also, it is clear that the pre-limit of f(¢) is a generalization of the
usual limit of f(¢) as t — +oo0.

Further, we can show that by a sequence z = (£f) is uniquely deter-
mined the pre-limit of a function f € . Indeed, suppose s’ ‘and s” are any
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two pre-limits of a function f € Q which are determined by same sequence
z = (&) and let us define the functions g and h by

g(t)=3s and h(t)=3s" (t>0).
Then, by (5), we have
(VL € I®) Lk —g) = L(f = ¢) = L(f = h) = L(f = &) = L(f = s") = 0
which, by (4) and (1), implies
plh—g)=|"~5§|=0 and & ="
Theorem 2.1. Let f € Q.

1° If for at least one double sequence x = (£7), E£ >0 (k=1,2,...,n—1;
n=1,2,...) and some s € R

n—1
(6) Jim {nlij;o% kz_:_o[f(t%?) — 5] } =0

holds, then pre-, ligrn ft)=s.

2° If pre-, liin f(t) = s, then for at least one double sequence x = (&)
— 400

e 1 n—1

holds.

Proof. Let the condition (6) is true. Then, by (1), (4) and (5), we have
pre- liin f(t) = s; so, the condition (6) is sufficient.
—>T o0

Conversely, let pre-, li+m f(t) = s. Then for some z = (£) (&f > 0), by
(5), (4) and (1), we have
n—1
_ | —1
T —1 ny
Jim {T}Lngon };U(H&C) 5] }
which means that

t—-+4oco
k=0

so, the condition (7) is necessary which completes the proof.
Applying now the theorem 2.1 we will show the following applicable
theorem though it contains a new restrictive condition.

n—1
i {’@o} S+ 6 o }

Theorem 2.2. Let f € Q0 be a Riemann integrable function on each
segment [a,a + T for T > 0 and a > ap. If for at least one T'(> 0)
1 a+T
(8) —/ f)dt - s as a— +oo,
T/,

then pre- lim f(t) = s.

t—+oo
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Proof. Suppose that the condition (8) is valid for some T'(> 0). Let us
choose the following fundamental sequence of partitions (P,), where

Pn:{z'T 7::0,1,2,... ,n}, n:1727-"v

n
which subdivides the interval [0, T] into n subintervals [t} _;,t7] (k= 1,2,... ,n;
n =1,2,...,) and let us choose arbitrarily the points & € [t7_,,17] (k =
1,2,...,n;n=1,2,...). Because the function f is integrable on [a,a+T] we
have
n T a+T
1i == t)dt
n;gm]§f(a+§k)n /a HO)
or

n—+00 T

n a+T
lim lEf(cwrs;?) = %/ f(t)dt.
ke a

Since (8) is true, we have

1T , 1
dmp [ fod= dm i 2 Sk ) =

Hence we have

which implies

Jm {nligr;o% D [f(a+&) —s } =0.

Now, letting i = k£ — 1, we have

n—1
aﬁzzo{n@go% 2 [fla+e) = } =0

which, by (6), means that pre-lim;, 1, f(¢) = s which completes the proof.
To make the idea of the pre-limit of a function a little clearer we give a
number of examples.
Example 1. The function sine has pre-, _1}&100 sint = 0. Indeed, for T' =

27, by (8), we have

a+2mr 1
pre— lim sint= lm — / sintdt = lim ——(—cosa+ cosa) = 0.
t—+co a—+oo0 27 J, a—+oc0 27

Example 2. Let f € Q be defined by
f(t) =sgn(sint), t>0.
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Then clearly for all ¢ > 0 we have
a+2m 1 21
—/ fi)dt = — fitydt=0= pre— hm fit)y =
0

Similarly, if f(t) = sgn(cos t), then pre-, h+m f@t) =
— 00
Example 3. Let n be a positive integer and let f € ) be the periodic
function with period n defined by
f&) =[], 0<t<n.

Then
1 a+n 4
~ i = lim - t)dt =
pre lim_f(6) = lim ~ [ (0
n 1424 -+ (n—1 _1 1
n Jo n 2n 2
Example 4. Let f € Q) be defined by
1, t=n
f(t)={0 4 (n=0,1,2,...).
Then for all @ and T (a > 0, T > 0 we have f f(t)dt = 0 which implies
1 a+T
pre= lim_7(0)= tm 7 [ )
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