THE PRE-LIMIT OF A REAL-VALUED FUNCTION

Dimitrije Hajduković

Abstract. 1. In [1] S. Banach shown the existence of very known Banach linear shift-invariant functionals defined on the real vector space of all bounded real-valued functions on the semi-axis $t \geq 0$ and especially on the space of all real bounded sequences. In [2] G. G. Lorentz defined, by Banach shift-invariant functionals, the class of almost convergent sequences. In [3] almost convergence was extended to real-valued functions on the semi-axis $t \geq 0$. In [4] almost convergence was extended to bounded sequences in a real normed space.

2. This paper is devoted to a class of functions defined on the semi-axis $t \geq 0$ which are near to the functions f having $\lim_{t\to\infty} f(t)$. The paper is organized as follows. First, for a sufficiently large a (written $a>a_0$ for some a_0) by Ω we denote the real vector space of all functions defined on $[0,+\infty)$ and bounded on $[a,+\infty)$. Next, we will show the existence of a family of functionals defined on the space Ω . By these functionals we define the notion of pre-limit of a function $f\in\Omega$ and investigate the family of all these functions. Further, we will show a theorem characterizing a function having the pre-limit. Also we show another theorem which is very applicable, though it contains a new restrictive condition. Finally, to make the idea of pre-limit a little clearer, we give several examples functions having pre-limit.

1. A new family of functionals

Let us choose a double sequence $x=(\xi_k^n),\ \xi_k^n\geq 0\ (k=1,2,\ldots,n;$ $n=1,2\ldots)$ and fix it. Then the functional $p_x\equiv p$ defined on the space Ω by

(1)
$$p(f) = \overline{\lim_{t \to \infty}} \left\{ \overline{\lim_{n \to \infty}} \frac{1}{n} \left| \sum_{k=0}^{n-1} f(t + \xi_k^n) \right| \right\}, \quad f \in \Omega$$

corresponds to x.

The functional p is seen to by real-valued and it satisfies the conditions

$$p(f) \ge 0$$
, $p(af) = |a|p(f)$, $p(f+g) \le p(f) + p(g)$ $(a \in R; f, g \in \Omega)$;

AMS (MOS) Subject Classification 1991. Primary: 46A26.

Key words and phrases: Functional, Pre-limit, Convergence, Pre-convergent.

that is, p is a symmetric convex functional on the space Ω . According to a corollary of Hahn-Banach theorem (see also [5], Exercise 2, p. 187) there exists a nontrifial linear functional L on the space Ω such that

(2)
$$|L(f) \le p(f), \quad f \in \Omega.$$

Next let Ω_0 be the space of all functions $f \in \Omega$ having $\lim_{t \to \infty} f(t) = 0$. Also, for some $s \in R$ $(s \neq 0)$ let us define the function g by g(t) = s, $t \geq 0$. Then $g \in \Omega \setminus \Omega_0$ and p(g) = |s| > 0. Notice also that clearly we have

(3)
$$p(f) = L(f) = 0, \quad f \in \Omega_0$$

Now, to extend the functional L to the space spanned by Ω_0 and $\{g\}$ (that is, the space $\Omega_0 \cup \{g\}$), the value L(g) we can choose arbitrarily in the segment [-p(g), p(g)]; that is, we can extend the functional L in a such way that it has distinct values at $g \in \Omega$. In other words, the functional L satisfying the above conditions is not unique.

Indeed, we can take the value L(g) arbitrarily in the segment [k, K], where

$$k = \sup_{f \in \Omega_0} \{-p(f+g)\}, \quad K = \inf_{f \in \Omega_0} \{p(f+g)\}$$

since L(f) = 0, $\forall f \in \Omega_0$ (see, for example, [6], p. 222). Further, by (1), we have p(f+g) = p(g) since

$$\lim_{t \to \infty} [f(t) + g(t)] = \lim_{t \to \infty} g(t) = s.$$

So, we can take the value L(g) arbitrarily in the segment [-p(g), p(g)]. We shall now show the following lemma.

Lemma 1.17. Let X be a real linear space and $p: X \to R$ a functional satisfying the conditions

$$p(x) \ge 0, \ p(ax) = |a|p(x), \ p(x+y) \le p(x) + p(y) \ (a \in R; \ x, y \in X).$$

Then for any $x_0 \in X$ there exists a linear functional L on X such that

$$(\forall x \in X)|L(x)| \le p(x), \quad L(x_0) = p(x_0).$$

Proof. Cleraly, the set $X_0 = \{\alpha x_0, \ \alpha \in R\}$ is a subspace of the space X and L_0 , defined by

$$L_0(\alpha x_0) = \alpha p(x_0) \quad (\alpha \in R)$$

is a linear functional on X_0 satisfying the condition

$$|L_0(\alpha x_0)| = |\alpha p(x_0)| = |\alpha| p(x_0) = p(\alpha x_0) \quad (\alpha \in R)$$

By a version of Hahn-Banach theorem (see [5], theorem 11.2, p. 181) there exists a linear functional L on X extending L_0 and satisfying the condition

$$(\forall x \in X) |L(x)| \le p(x).$$

Also we have

$$L(x_0) = L_0(x_0) = 1 \cdot p(x_0) = p(x_0),$$

which completes the proof.

Denoting now by $\Pi^{(x)}$ the family of functionals satisfying the above conditions, for each $s \in R$, we obtain

(4)
$$(\forall L \in \Pi^{(x)}) L(x-s) = 0 \text{ iff } p_x(f-s) = 0, f \in \Omega.$$

Indeed, $p_x(f-s)=0$ clearly implies $L(f-s)=0, \forall L\in\Pi^{(x)}$. Also, the implication

$$(\forall L \in \Pi^{(x)})$$
 $L(f-s) = 0 \Rightarrow p_x(f-s) = 0$

is equivalent to the implication

$$p_x(f-s) > 0 \Rightarrow (\exists L \in \Pi^{(x)}) \ L(f-s) \neq 0$$

which, by the lemma proved before, is valid. So, (4) must be true.

Because the sequence $x = (\xi_k^n)$, $\xi_k^n \ge 0$ contained in (1) is arbitrary, we have shown the following theorem.

Theorem 1.1. For any sequence $x = (\xi_k^n)$, $\xi_k^n \ge 0$ (k = 1, 2, ..., n; n = 1, 2, ...) there exists a family $\Pi^{(x)}$ of nontrivial functionals L defined on the space Ω such that for all $a, b \in R$, all $s \in R$ and all $f, g \in \Omega$ the following assertions are valid

$$1^{\circ} L(af + bg) = aL(f) + bL(g),$$

$$2^{\circ} |L(f)| \le p_x(f),$$

3°
$$(\forall L \in \Pi^{(x)}) L(f-s) = 0 \text{ iff } p_x(f-s) = 0.$$

2. The pre-limit of a real-valued function

Having the results obtained before we can proceed to investigation the family of all functions $f \in \Omega$ to which all functionals from the theorem 1 assign same value.

Definition 2.2. Let $f \in \Omega$. Then f(t) has pre-limit s as $t \to +\infty$ if for at least one family $\Pi^{(x)}$ and for at least one number $s^{(x)} \equiv s$ the following assertion

(5)
$$(\forall L \in \Pi^{(x)} \ L(f-s) = 0$$

is valid.

Notice that, by the definition 1, in general, it is possible that a function $f \in \Omega$ has distinct pre-limits which are determined by distinct sequences $x = (\xi_k^n)$. Also, it is clear that the pre-limit of f(t) is a generalization of the usual limit of f(t) as $t \to +\infty$.

Further, we can show that by a sequence $x = (\xi_k^n)$ is uniquely determined the pre-limit of a function $f \in \Omega$. Indeed, suppose s' and s'' are any

two pre-limits of a function $f \in \Omega$ which are determined by same sequence $x = (\xi_k^n)$ and let us define the functions g and h by

$$g(t) = s'$$
 and $h(t) = s''$ $(t \ge 0)$.

Then, by (5), we have

 $(\forall L \in \Pi^{(x)}) \ L(h-g) = L(f-g) - L(f-h) = L(f-s') - L(f-s'') = 0$ which, by (4) and (1), implies

$$p(h-g) = |s'' - s'| = 0$$
 and $s' = s''$

Theorem 2.1. Let $f \in \Omega_0$.

1° If for at least one double sequence $x = (\xi_k^n)$, $\xi_k^n \ge 0$ (k = 1, 2, ..., n-1; $n=1,2,\ldots$) and some $s\in R$

(6)
$$\lim_{t \to +\infty} \left\{ \lim_{n \to \infty} \frac{1}{n} \left| \sum_{k=0}^{n-1} [f(t+\xi_k^n) - s] \right| \right\} = 0$$

holds, then pre- $\lim_{t\to +\infty} f(t)=s$. 2° If pre- $\lim_{t\to +\infty} f(t)=s$, then for at least one double sequence $x=(\xi_k^n)$

(7)
$$\lim_{t \to +\infty} \left\{ \overline{\lim}_{n \to \infty} \frac{1}{n} \left| \sum_{k=0}^{n-1} [f(t+\xi_k^n) - s] \right| \right\}$$

holds.

Proof. Let the condition (6) is true. Then, by (1), (4) and (5), we have pre- $\lim_{t\to +\infty} f(t) = s$; so, the condition (6) is sufficient.

Conversely, let pre- $\lim_{t\to +\infty} f(t)=s.$ Then for some $x=(\xi_k^n)$ $(\xi_k^n\geq 0),$ by (5), (4) and (1), we have

$$\overline{\lim_{t \to +\infty}} \left\{ \overline{\lim_{n \to \infty}} \frac{1}{n} \left| \sum_{k=0}^{n-1} [f(t+\xi_k^n) - s] \right| \right\},\,$$

which means that

$$\lim_{t \to +\infty} \left\{ \overline{\lim_{n \to \infty} \frac{1}{n}} \left| \sum_{k=0}^{n-1} [f(t+\xi_k^n) - s] \right| \right\},\,$$

so, the condition (7) is necessary which completes the proof.

Applying now the theorem 2.1 we will show the following applicable theorem though it contains a new restrictive condition.

Theorem 2.2. Let $f \in \Omega$ be a Riemann integrable function on each segment [a, a + T] for T > 0 and $a > a_0$. If for at least one T(> 0)

(8)
$$\frac{1}{T} \int_{a}^{a+T} f(t)dt \to s \quad as \quad a \to +\infty,$$

then pre- $\lim_{t\to +\infty} f(t) = s$.

Proof. Suppose that the condition (8) is valid for some T(>0). Let us choose the following fundamental sequence of partitions (P_n) , where

$$P_n = \left\{ \frac{i}{n}T : i = 0, 1, 2, \dots, n \right\}, \quad n = 1, 2, \dots,$$

which subdivides the interval [0,T] into n subintervals $[t_{k-1}^n,t_k^n]$ $(k=1,2,\ldots,n;$ $n=1,2,\ldots,)$ and let us choose arbitrarily the points $\xi_k^n\in[t_{k-1}^n,t_k^n]$ $(k=1,2,\ldots,n;$ $n=1,2,\ldots)$. Because the function f is integrable on [a,a+T] we have

$$\lim_{n \to +\infty} \sum_{k=1}^{n} f(a + \xi_k^n) \frac{T}{n} = \int_{a}^{a+T} f(t) dt$$

or

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(a + \xi_k^n) = \frac{1}{T} \int_a^{a+T} f(t)dt.$$

Since (8) is true, we have

$$\lim_{a \to +\infty} \frac{1}{T} \int_a^{a+T} f(t)dt = \lim_{a \to +\infty} \left\{ \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n f(a+\xi_k^n) \right\} = s.$$

Hence we have

$$\lim_{a \to +\infty} \left\{ \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} [f(a + \xi_k^n) - s] \right\} = 0.$$

which implies

$$\lim_{a \to +\infty} \left\{ \lim_{n \to \infty} \frac{1}{n} \left| \sum_{k=1}^{n} [f(a+\xi_k^n) - s] \right| \right\} = 0.$$

Now, letting i = k - 1, we have

$$\lim_{a \to +\infty} \left\{ \lim_{n \to \infty} \frac{1}{n} \left| \sum_{i=0}^{n-1} [f(a+\xi_i^n) - s] \right| \right\} = 0.$$

which, by (6), means that pre- $\lim_{t\to+\infty} f(t) = s$ which completes the proof.

To make the idea of the pre-limit of a function a little clearer we give a number of examples.

Example 1. The function sine has pre- $\lim_{t\to +\infty} \sin t = 0$. Indeed, for $T = 2\pi$, by (8), we have

$$\operatorname{pre-}\lim_{t\to +\infty}\sin t = \lim_{a\to +\infty}\frac{1}{2\pi}\int_{a}^{a+2\pi}\sin t dt = \lim_{a\to +\infty}\frac{1}{2\pi}(-\cos a + \cos a) = 0.$$

Example 2. Let $f \in \Omega$ be defined by

$$f(t) = \operatorname{sgn}(\sin t), \quad t \ge 0.$$

Then clearly for all $a \geq 0$ we have

$$\frac{1}{2\pi} \int_{a}^{a+2\pi} f(t)dt = \frac{1}{2\pi} \int_{0}^{2\pi} f(t)dt = 0 \Rightarrow \text{pre}-\lim_{t \to +\infty} f(t) = 0.$$

Similarly, if $f(t) = \operatorname{sgn}(\cos t)$, then $\operatorname{pre-}\lim_{t \to +\infty} f(t) = 0$.

Example 3. Let n be a positive integer and let $f \in \Omega$ be the periodic function with period n defined by

$$f(t) = [t], \quad 0 \le t < n.$$

Then

$$\operatorname{pre-}\lim_{t \to +\infty} f(t) = \lim_{a \to +\infty} \frac{1}{n} \int_{a}^{a+n} f(t)dt =$$

$$= \frac{1}{n} \int_{0}^{n} f(t)dt = \frac{0+1+2+\cdots+(n-1)}{n} = \frac{n(n-1)}{2n} = \frac{n-1}{2}.$$

Example 4. Let $f \in \Omega$ be defined by

$$f(t) = \begin{cases} 1, & t = n \\ 0, & t \neq n \end{cases} \quad (n = 0, 1, 2, \dots).$$

Then for all a and T ($a \ge 0$, T > 0 we have $\int_a^{a+T} f(t)dt = 0$ which implies

$$\operatorname{pre-}\lim_{t\to+\infty}f(t)=\lim_{a\to+\infty}\frac{1}{T}\int_{a}^{a+T}f(t)dt=0.$$

3. References

- [1] Banach S., Theorie des operations lineaires, Warszawa (1932), 28-29.
- [2] Lorentz G. G., A contribution to the theory of divergent sequences, Acta mathematica 80 (1947), 167-190.
- [3] Elin M. V., O počti shodjašćihsja funkcijah, Izvestije visših učenbnih zavedenij (Matematika) No 6(37), 1963, str. 49-57.
- [4] Hajduković D., Almost convergence of vector sequences, Matematičeski vesnik 12 (27), 1975, str. 245-249.
- [5] Bachman G. and Narici L., Functional Analysis, Academic Press, New York and London (1966), p. 187.
- [6] Aljančić S., Uvod u realnu i funkcionalnu analizu, Građevinska knjiga, Beograd (1968), str. 222.

Milana Rakića 5 51000 Banja Luka BiH