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COMPLETENESS THEOREM FOR BOOLEAN
MODELS WITH STRICTLY POSITIVE
MEASURE

Nebojsa Ikodinovié

Abstract. Raskovi¢ [3] introduce a conservative extension of classi-
cal propositional logic with some probability operators and prove corre-
sponding completeness and decidability theorem. The aim of this paper
is to prove the Robinson consistency and Craig interpolation for this
logic.

1. Introduction

Rasgkovié¢ [3] introduce the logic of possibility LP, which is a conserva-
tive extension of classical propositional logic with same probability operators.
Formulas from this logic speak about probabilities, but they remain either
true or false. The language of this logic is obtained by adding probability
operators to the classical propositional language. The probability operators
have (in our notation) the form P, with the intended meaning that Ps ;¢
holds if the probability of ¢ is greater or equal to s. The axiom and rules
inference of the logic LP are listed in [3] for which is proved completeness
with respect to "natural” models.

In this paper we investigate some probability logic LP™T which is com-
plete with respect to Boolean models with strictly positive measure. The
language of LP™ is the same as for LP. Axiom and rules of inference of LP+
are those of LP, together with the following rule of inference:
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2. LPT logic

The symbols of LPT logic are the so-called connectives: A (and), —
(negation), then the list of probability operators Ps, for each s € [0,1] N Q,
and finally an infinite sequence of propositional letters I.

The set F 0T€P+ of all classical propositional formulas is defined in-
ductively as the smallest set containing the propositional letters and closed
under the usual formation rules: if ¢ and 1) are classical propositional formu-
las, then -y and ¢ A ¢ are classical propositional formulas. The set FOTILD P+
of all probability formulas is the smallest set such that:

—ifpe ForrgPJr and s € [0,1] N Q, then P>, is probability formula;
— if & and ¥ are probability formulas, then -® and & A ¥ are also prob-
ability formulas.

Let Forpp+(I) = Forgp+(f) U For?,.(I). We introduce the abbre-
viations V, =, <>, in the usual way. It is convenient of use the following
abbreviations in LP*:

o Posp for =P,
o P, for Poi_sp,
o Pssp for =P<sip,
o Py for Pos(p) A=Psgp.

The axioms for LP™ logic are every instance of classical propositional
tautology and the following ones:

(1) Psop, for all p € FOT€P+;

(2) P<rp = Pegp, for all p € Forprr and s,7 € [0,1] N @ such that s > r;
(3) Pesp = Pesip for all g € For$p, and s € [0,1] N Q;

(4) (Poro A Posth A Por(mp V) = Poqin(1,r4) (0 V ) for all , ¢ €

For®,,, rs€(0,1]NQ;

(5) (Perp A Pesth) = Peris(p V) for all 0,9 € ForGp,, s,m €[0,1] N Q
such that r +s < 1.
The rules of inference are:
(R1) From @ and ¢ = U, infer ¥, &, ¥ € For$,, or ¢,V € Forl,,.
(R2) From ¢, infer P>y, p € Forfp+.
(R3) From P>, infer ¢, p € For¢,,.
(R4) From & = PZS_%QO, for every k > %, infer @ = P>y, @ € Forprr,
RS Forgp+.
A proof of formula & in theory T of logic LP™ is every countable se-
quence @1, Py, ..., P of formulas such that each formula &;,7 < w, is a axiom,
or a formula from T, or it is derived by inference rules from preceding mem-
bers of the sequence. If there exists a proof of @ in T, then & is called a
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theorem of T', and in this case we use the notation T Fyp+ @. A theory T is
consistent if there are any formula ¢ € F 07“513,4r such that TV p+¢ and any
formula @ € F orf p+ such that Tt p+®. A theory T is a maximal consistent
iff T is a consistent theory and:

— forall p € Forfp+, if Thrp+o, then ¢ € T and Ps1p €T

— for all @ € Forfp+, decTor-decT.

Having in mind the deductibles relation just defined, by induction on

the length of the corresponding derivation, we can prove:

Theorem 1. If T C Forpp+ and TU{a} Frp+ B, thenT Fpp+ o = 3,
where a and G are either both classical or both probability formulas.

Theorem 2. For every consistent theory T' C Foryp+, there exists a
maximal consistent theory extending T.

Proof. Let T C Forpp+ be a consistent theory, T the set of all classical
consequences of T and v, ag,... an enumeration of all probability formulas
from Forpp+. We define a sequence of theories T3, i = 0,1, 2, ... such that:

1. Tp =TUTCU{P21O£:C¥€TC},

2. for every i > 0, if T; U {a;} is consistent, then T;11 = T; U {ay},
otherwise

3.if o is B = P>gv, and T; U {a;} is not consistent, then T;1; =
T;U{B = —P,_1}, for same positive integer n > %, so that T;1, is consistent,
otherwise, "

4. Ty =T

The set obtained by the steps 1,2, or 4 are obviously consistent. The
steps mean that 7;4+1 contains a witness which guarantees that T; U{«;} is not
consistent. We can show that this step produce consistent set, too. Suppose
that T} is consistent, a; 8 = P>s7v, T; U {e;} is not consistent, and for every

positive integer n, T; U {3 = —P,_1} is not consistent. But, then

8

T;,8 = -P_1vFrp+ L, for every positive integer n > %,

T; Frp+ ~(B = —P,_17), for every positive integer n > %, by the

deduction theorem,
T; Frp+ B = P._17, for every positive integer n > %, by the classical

8
n

tautology ~(4 = B) = (A = —B),

T; Frp+ B = P>, by the inference rule 4.

This implies that T; is not consistent, a contradiction. Hence, every T;
is consistent.

Let T = U;T;. We can prove that T* is a deductively closed set which
does not contain all formulas, and, as a consequence, that T is consistent.
IfaeF OTgP+, by the construction of Ty, a@ —a cannot be simultaneously
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in Ty. For a probabiligg.,fofmula « the set T™ does not contain both a = «;
and « = ¢, because Tax(i,j)+1 is a consistent set. If o is a classical formula
and T* Fpp+ «, then by the construction of Ty, a € T and Ps1a € T™.
It can be proved by induction on the length of the inference that for every
probability formula o if T* -, p+ «, then o € T™. For example, let ¢ = a; =
(B = P>s7) be obtained from T™ by an application of inference rule 4. By
induction hypothesis 8 = P, _ 17 € T* for every positive integer n > % and

for every n > % there is T}, so that § = P, 17 € Tk, .But, if a; ¢ T™, then
Ti+1 and so T, contain 8 = P, 17, for an j > %, a contradiction. Finally,

we can prove that for every probability formula «, either o, or —a belongs to
T*. Suppose that « is a;, ~a is @;, k = max(4,7), a € T* and -« € T™. But,
then

Tk, a I"Lp+ 1

Tk, mled I—LP"‘ 4 .

Ty Fop+ oo Ao

So T} is not consistent, a contradiction. 0[O

LetB = (B, +,-,—,0,1) be arbitrary Boolean algebra. A B—interpretation
of the set I of propositional letters is every map f : I — B. Then, it is natural
to extend the map f: 1 — B tomap f: Forfp+ — B, B-interpretation of
the classical propositional formulas, inductively as follows:

F=p) = =), flo V) = flo)+ [(¥), fleny) = Flo)- f(¥).

A Boolean model for LP* logic is every triple (B, f, 1), where B is a
Boolean algebra, f is a B—interpretation of the set of classical propositional
formulas, and u is a (finitely—additive probability) strictly positive measure
on B. For any formula @ € Foryp+, we define the relation (B, f, ) = &, by
induction on the complexity of the formulas @, as follows:

~ if & € For{p,, then (B, f, 1) = @ iff f(®) =1,
— P =Pssp, p€ Forgp+, s €[0,1]NQ, then (B, fu) = @ iff u(f(p)) >

8)

—ife=9N0,¥0c¢c ForfP+, then (B, f,u) =@ iff (B, f,u) = ¥ and

(B, f, 1) = O,

—if & =-9,¥ € Forf,,, then (B, f, 1) = & iff not (B, f,u) = ¥
We simply write = @ and say that @ is valid iff for every Boolean model

(B, f,1), (B, f,u) E 5.
Theorem 3. (Soundness Theorem) Any set T of formulas of LP*
logic which has a model is consistent.

Proof. As usual, to prove the soundness theorem it suffices to show that
each axiom is valid and the rules of inference preserve validity.
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A classical propositional tautology is obviously valid.

Let @ and U are both classical or both probability formulas such that
P and & = ¥ are valid. If we suppose that & ¥, then there is a Boolean
model (B, f, 1) such that (B, f,u) & ¥ and (B, f,u) =@ = ¥, so (B, f,n) %
@,which is a contradiction by validity of .

Ifpe FOT‘LP+ is valid then for any Boolean model (B, f, ), flp) =1,
we have (B, f, 1) = P>10.

If Ps1p, o € ForgPJr, is valid then for any Boolean model, for LP™T,
(B, £, 1), p(f(p)) =1, we have f(p) = 1, since p is strictly positive, and so
(B, f, 1) =

Finally, the rule (R4) preserve validity since the set of reals is Archimedean
field. O

Theorem 4. (Completeness Theorem) Every consistent theory T C
Foryp+ has a Boolean model.

Proof. Let T be a consistent theory. By Theorem 1. there is a maximal
consistent extension 7™ of T. Let T° be the set of all classical consequences
of T, Byc the Lindenbaum algebra of 7°¢ and f : ForfPJr — Bpe be defined

flp) = [@lre, where [@]7c is the equivalence class determined by a formula
® E FOT§P+ Let . Bre — [0, 1] be defined by:
p([plge) = sup{r € [0,1]NG : Porp € T*}, 0 € For&ps.
We shall show that u is a strictly positive measure on Bre.

First, let us prove that u is a well-defined. It is suffices to prove that
for all v, % € ForS,,, if [plpe < [W]re, then p([@le) < pu([¥]pe). Really, if
[Olpe < [$lpe, then T - (p = 9) and consequently T, p+Ps1(p = ).
Thus, if P>gp € T*, then P> 1p € T*. So, p([@lre) < p([¥]qe)-

It is easy to see that u(1) = 1.

We show that u([¢]re) + u([¥]re) = p(lelpe + [¥]re), for all v, 9 €
For®,. such that [¢]p. - [¥]pe = 0. Let p([¢]re) = 7, p([]pe) = s. Then
T+ s < 1. Let us suppose that » > 0 and s > 0. By monotonicity, for all
rational numbers r’ € [0,7) and s’ € [0, s) we have P<./¢, P<gt € T*. Thus,
we have Psppg (@ V) € T*. So, r+s <sup{t € [0,1] N Q : Pst(p V1Y) €
T*}. If r + s = 1, then obviously the statement holds. Let us suppose that
r+s <L Ifr+s <ty =sup{t € [0,1]NQ : Ps( V) € T}, then
for all rational numbers ¢’ € (r + s,ty), P>i(p V ¢) € T*. Let us choose
rational numbers r” > 7 and s” > s such that =Psmp, Pepp, =P,
Pogrip € T* and r" 4 s =t/ < 1. Thus, we have P<,np € T* and we have
Pornygn(@V ), 7 Pspny o (@Vh), ~Psy (V) € T* which is a contradiction.
So, p([@]pe) + p([Wlpe) = p[@] e + [¥]pe). Similarly, for r = 0 and s = 0. So,
L is a measure on Bype.
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Finally, p is a strictly positive measure since if u([p|re) = 1, then
P51 € T* and so ¢ € T*, by the inference rule 3, and [p|pe = 1.

It is easy to see that (Bpe, fre, 1) is a Boolean model of the theory T
O

The Boolean model of 7" constructed in the way described above we call
a canonical model.
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