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ON EIGENVALUES AND MAIN EIGENVALUES
OF A GRAPH

Mirko Lepovié

Abstract. Let G be a simple graph of order n and let A; > Az >
- > Apoand A7 > A5 > .- > A% be its eigenvalues with respect
to the ordinary adjacency matrix A = A(G) and the Seidel adjacency
matrix A* = A*(G), respectively. Using the Courant-Weyl inequalities
we prove that A\py1_; € [-Ai—1, —Xg1—1]and X, € [-2\ —
1, —2X\41— 1] fori=1,2,...,n— 1, where ); are the eigenvalues of its
complement G. Besides, if G and H are two switching equivalent graphs
then we find X\ (G) € [Aiy1(H), \i—1(H)] for ¢ = 2,3,...,n — 1. Next,
let g1, oy -, pi and fiy, fg, - - - , B, denote the main eigenvalues of the
graph G and the complementary graph G, respectively. In this paper we
also prove > 7 (i + ;) = n — k.

1. Introduction

Let G be a simple graph of order n. The spectrum of such a graph
contains the eigenvalues \; > Ay > -+ > A, of its (0,1) adjacency matrix A =
A(G) and is denoted by o(G). The Seidel spectrum contains the eigenvalues
AT > A5 > .- > Ay of its Seidel (0,—1,1) adjacency matrix A* = A*(G)
and is denoted by o*(G). Let Pg(A) = |[AM — A| and PA(A) = |A — A*|
denote the characteristic polynomial and the Seidel characteristic polynomial,
respectively.

In the sequel, for the sake of brevity, eigenvalues \;(G) of the comple-
mentary graph G will be denoted by X; (i =1,2,... ,n).

Let A = Ala;;] be the adjacency matrix of a graph G and let A% =
A’“[agc)] for any non-negative integer k. The number Ny of all walks of length
k in G equals sum A*, where sum M is the sum of all elements in a square
matrix M.
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As is known,
. oC
(1) He(t) =) Net*  (jt] < ATY),
k=0

is the generating function of the number Ny of walks of length % in the graph
%5. Using (1) and according to [1], we have
1 (—1)"Pg(—A —
He(—) =X
o) =2 [
from which we obtain (—1)"Pg(—A — 1) > Pg(A) > 0 for A > ;. Hence
we find that P=(A) has no zero in the interval (—oco, —A; — 1). Therefore,
An > =M — 1. '
Proposition 4. For any graph G of order n we have Ay +XA, +1>0.

1 —1J>O (A > A1),

~ This simple result has motivated us to consider some other inequalities
with respect to the eigenvalues ); of the graph G and eigenvalues ); of its
complementary graph G. They are based on the following statement.

Theorem 1. (The Courant-Weyl inequalities (see [1])). Let A and B
be two real symmetric matrices of order n and let C = A+ B. Then
(1%) Aitj+1(C) € Air1(A4) + Aj+1(B);
(20) /\n—i—j(c) z /\n—z(A) + /\n—j(B)>

where 0 <4, 7,14+ 7+ 1<n.

2. Some Consequences of the Ccourant-Weyl inequalities

Proposition 5. Let G be a graph of order n. Then
(2) /\Z+X‘n+1-—1+120 (121,2,,71),
(3) Al + A1 +1<0  (i=1,2,...,n~1).
Proof. Since K = A+ A is the adjacency matrix of the complete graph
K, we have that A;(K,) =n—1and A\(K,) =—1Lfori=2,3,...,n.
Setting i + 7 + 1 = n and replacing ¢ + 1 with i in (1°), we obtain (2).
Similarly, setting n —i— j = 2 and replacing n —1 with 41 in (2°), we obtain
(3).0

D. Cvetkovié¢ in [5] proved: (1) A —|—Xj +12> n52,~;+j and (11) /\n—i+1 +Xn_.j+1 +1< »
N 8n+1,i+j, where 2 <i4 35 < n 41 and §;,; is the Kronecker delta symbol. Note that (2)
and (3) (Proposition 2) can be easily proved by using relation (i) and (ii}, respectively. For
instance, replacing j with n+ 1 — ¢ in inequality (i) we obtain implicitly Proposition 2 (2).
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Corollary 1. Let G be a graph of order n. Then
Ansimi € [ Ai—1, =Xy —1]  (i=1,2,...,n—-1).
The following result is well-known in the spectral theory of graphs, for
instance see [1], [3].
Corollary 2. Let A € o(G) be an eigenvalue of the graph G with mul-

tiplicity p > 1 and let q be the multiplicity of the eigenvalue — A —1 € o(G).
Thenp—-1<g<p+1.

Corollary 3. For any graph G of order n we have |An|+|An| < 2M+1,
where A\, = min {A;, \1}.

Proof. Since A\; + A, 41 > 0 and A\; + A, > 0 we easily get [An|+|An] <
2A1 + 1, which provides the proof.O

For the complete graph K, and G = CJ Ky note that |A,| + [An] =

=1

2X, + 1 for any k € N. :

Further, let G be a regular graph of order n and degree r. It is known
that n—1—r> —A, —12> .-+ > — Xy — 1 are the eigenvalues of the regular
graph G. Using this fact and having in mind that A\; + A\; = n — 1 if and only
if G is regular, we can easy to prove the next statement.

Proposition 6. Let G be a graph of order n. Then ,\i+1+Xn+1_i+1 =0
fori=1,2,...n — 1 if and only if G is regular.

It is also well-known that A* + 24 = K. Using the same arguments as
in the proof of Proposition 2, one may obtain the following result.

Proposition 7. Let G be a graph of order n. Then:
(4) i+X+1>0  (i=1,2,...,n);
(5) N1+ A +1<0 (i=1,2,...,n~1).
Corollary 4. Let G be a graph of order n. Then
mi1oi € [ 20— 1, = 2X41 — 1] (i=12,...,n—1).

Corollary 5. ( [2], [4]). Let A € o(G) be an eigenvalue of the graph G
with multiplicity p > 1 and let g be the multiplicity of the eigenvalue — 2A—1 €
o*(G). Thenp—-1<¢g<p+1.

Let S be any subset of the vertex set V(G). To switch G with respect to
S means to remove all edges connecting S with S = V(G)\.S, and to introduce
an edge between all nonadjacent vertices in G which connect S with §. Two
graphs G and H are switching equivalent if one of them is obtained from the
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other by switching. It is known that switching equivalent graphs have the
same Seidel spectrum.

Proposition 8. Let G and H be two switching equivalent graphs. Then
we have N;(G) > A\jp1(H) fori=1,2,... ,n—1.

Proof. Replacing ¢ + 1 with ¢ in (5) and using (4), we immediately

obtain
A+ 1 A, o+ 1
ye |- fntimi Tl Aniait (i=2,3,...,n).
2 2
Using that ¢*(G) = ¢*(H) and according to (4) and the last relation,
we get easily

M(GQ), AL(H) > X2(G), A2(H) > -+ 2 M(G), \n(H),

from which we obtain the statement. D
Due to the fact that A € ¢(G) cannot be a non-integer rational number,
we obtain a result as follows.

Corollary 6. If \* € 0*(G) is an even integer then its multiplicity
must be 1.

Corollary 7. Let G and H be two switching equivalent graphs. Then
A(G) € [Nig1(H), Aimi(H)] (i=2,3,...,n—1).

Corollary 8. ( [4]). Let G and H be two switching equivalent graphs.
Let A € o(G) be an eigenvalue of the graph G with multiplicity p > 1 and let
g be the multiplicity of A with respect to H. Thenp—2 < qg<p+ 2.

For a graph G let n4(G) and n_(G) denote the number of positive and
negative eigenvalues of G, respectively.

Corollary 9. Let G and H be two switching equivalent graphs. Then
n4(G) —1<ny(H) S ny(G) +1;
n_(G)-1<n_(H)<n_(G)+1.

Definition 1. A graph G of order n is called spectral complementary,

if
Pe(\) = Pg(A) = (=1)" (Pe(=A ~ 1) = Pg(=A - 1)).
Some elementary results related to the spectral complementary graphs

were proved in [7]. Among other results, it was proved the following:
(z) G UG is spectral complementary for any graph G;

(y) G is spectral complementary if and only if 0*(G) = o*(G);
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() there exists no spectral complementary graph of order 4n + 3 for any
n > 0.
According to (z), one can see that the class of all spectral complemen-
tary graphs is infinite. We notice, according to (z), the class of all graphs
which are not spectral complementary is infinite too.

Proposition 9. Let G be a spectral complementary graph. Then
Ai > Nip1and A > Ay,
fori=1,2,... ,n—1.
Proof. Using (y) and (5), we get
2Xi41 + Ahi_, +1<0 (i=1,2,...,n=1).
Combining (4), (v) and the last relation, we obtain the statement.O

Corollary 10. Let G be a spectral complementary graph. Then

n4(G) =1 <ny (G) < ny(G) + 14
n_(G)—1<n_(G) <n_(G)+1.

For any n > 3 the complete graph K, violates some relations in Propo-
sition 6 and/or Corollary 10. Thus, K, is not spectral complementary for any
n > 3.

On the other hand, the unicyclic graph Cjy is consistent with all relations
in Proposition 6 and/or Corollary 10 — in spite of this fact, Cy4 is not spectral

complementary.

3. Some results on main eigenvalues

Let g > p2 > -+ > um be the distinct eigenvalues of a graph G of order
n and let £4(p;) denote the eigenspace of the eigenvalue u; (i =1,2,... ,m).

An eigenvalue p € o(G) is called the main eigenvalue if the cosine of
the angle between the eigenspace £4(p) and the main vector j (whose all
coordinates are equal to 1) is different from zero. In other words, we say
that the eigenvalue p is main if and only if (j,Pj) = ncos? 8 # 0, where P
represents the orthogonal projection of the space R™ onto £4(p).

Let M(G) denote the set of all main eigenvalues of a graph G. As is
known, G and its complementary graph G have the same number of main
eigenvalues [3], that is [M(G)| = |IM(G)|.

The class of all spectral complementary graphs is very large. For the sake of an example,
between 11117 of all connected non-isomorphic graphs of order 8 there exist exactly 1142
spectral complementary graphs (see [7]).
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Proposition 10. Let pi, o, ..., ug and Gy, By, .. ., B be the main ei-
genvalues of the graph G and its complement G, respectively. Then we have

Zk: (wi +7;) =n—k.

=1
Proof. Since

k k
S+ A=0 and Y B+ (—h-1=0,
=1 i

1EN i= €A
where A = {i|\; € 0(G) ~ M(G)}, we readily obtain the proof.00
Corollary 11. Let G be a self-complementary graph of order n. Then
n=k(mod2) where k=|M(G)|.

Proof. Setting A(G) = o(G) ~ M(G) note that A(G) = A(G). Con-
sequently, for any A € A(G) we have — A —1 € A(G). Since A = — A —1is
impossible for any A, — A — 1 € A(G), it turns out that |[A(G)| = n — k must
be an even integer.O

Corollary 12. There exists no reqular self-complementary graph of or-
der 2n.

Let ui > p3 > -+ > pr, be the distinct Seidel eigenvalues of a graph
G of order n. In accordance with [4], \* € ¢*(G) is called the Seidel main
eigenvalue if and only if (j, P*j) = ncos? 8* # 0, where P* is the orthogonal
projection of the space R™ onto €4+ (A*). The number cos 3* is called the Seidel
main angle of A\*. Let M*(G) denote the set of all Seidel main eigenvalues of
a graph G. Then we also have |M(G)| = |IM*(G)| (see [4]).

Corollary 13. Let \* € ¢*(G) be an even integer. Then X\* € M*(G).

A +1

Proof. If \* € 0*(G) is an even integer then — ¢ o(G), which
provides the proof. O
Due to the fact that the Seidel spectrum of spectral complementary

graphs is symmetric with respect to the zero point, we arrive at

Corollary 14. Let G be a spectral complementary graph of order 2n.
Then 0 € 0*(Q)

Proof. Let assume, contrary to the statement, that 0 € ¢*(G). Then
its multiplicity must be a positive even number, which -is a contradiction to
Corollary 6.

This completes the proof.O
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Proposition 11. Let G be a regular graph of order n such that Pg(\) =
P=(X). Then 0 € M*(G) 0N M*(G).

Proof. Since Pg(A\) = Pz () it is clear that G is a spectral comple-
mentary graph (see Definition 1). Consequently, using (y) we have PZ()\) =
P (M\). Next, by relation Ay + Ay = n — 1 it follows that » must be an odd
integer. Thus, 0 € o*(G).

This provides the proof.0O

Using that A* + 24 = K and following the same procedure as in the
proof of Proposition 7, we obtain

Corollary 15. Let py, pto, ..., pr and pi, g3, - . ., i, be the main eigen-
values and the Seidel main eigenvalues of a graph G of order n, respectively.
k
Then we have . (uf +2u;) =n — k.
i=1
Further, for any A\* € ¢*(G) we have that —A* € ¢*(G). Having in
mind that £4+(A*) = Ex-(—A*), we obtain implicitly M*(G) = — M*(G),
understanding that — M*(G) = { A*| — A* € M*(G)}.
Corollary 16. Let G be a self-complementary graph. Then the Seidel
main spectrum M*(G) is symmetric with respect to the zero point.

In this paper,

O
H&() = ZN,?tk where Nj = sum (A%)*,
k=0
is called the Seidel generating function (see also [6]).
Using relation 24 = J — I — A* and according to [1], we can easy find
the next two results.
Corollary 17. Let G be a graph of order n. Then
A+1
1 [ (-1"2"Fe <_ er )
Hi(=) =X "
=21 e
L
Corollary 18. For any graph G we have

-1

(2A+1) HG(

1
HG<— 22 +1/ oAt H (1
c

|

)

)
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