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SUBMEASURES WITH PROBABILISTIC
STRUCTURES

Octavian Lipovan

Abstract. In [8] the author gives some probabilistic generalizations
of the submeasure concept. The purpose of this paper is to define a
general form of submeasure with probabilistic structure in such way that
the topological ring of sets induced is a uniform space. As particular cases
the probabilistic generalizations from [8] are obtained.

1. Introduction

The study of topological set rings with the topology induced by positive
submeasures is developed and systematized by L. Drewnowski in [3].

In [8], the author gives some probabilistic generalizations of the sub-
measure concept. The notions of probabilistic submeasures are introduced for
modelling those situations in which we have only probabilistic informations
about the (sub)measure of a set.

In analogy with the case of positive submeasures, the author developed
a topological study of the generalized probabilistic submeasures, as well as of
probabilistic structures on set rings.

The purpose of this paper is to define a general form of submeasure with
probabilistic structure, in such way that the topological ring of sets induced
is an uniform space. As particular case the probabilistic generalisations of
submeasure notion from [8] are obtained.

The notions and notations used here follow the book [13] and the pa-

per [8].

2. Preliminaries

Let (§,2A,N) be a ring of subsets of a fixed set S with respect to the
operations A (symmetric difference) and N (intersection).
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A mapping n: S — [0,00! is said to be a submeasure [3] if:
(i) n(0) =0;
(i) n(A) <n(B)if A,B €S and A C B;
(iii) n(AUB) <n(A)+n(B), A,Be€S.
For a submeasure 1 on .S, the classes U(e) = {4 € S,n(4) <&}, e >0,
are a normal base of neighbourhoods of () for Fréchet-Nikodym topology 7(7)
on S. This topology is semimetrizable for example by the semimetric:

d(A, B) = n(AAB), A,Be€S.

Let D, be the family of all submeasure distribution functions £ such
that F'(0) = 0 (recall that F is nondecreasing, left continuous, and F'(co) = 1).
By &¢ we denote the function of D, such that gg(X) =1 for all z > 0.

. A T-norm (in the sense of Schweizer and Sklar) is a binary operation
T on [0,1] such that ([0,1], T) is an order semigroup with unit. The most
important ¢-norms are T3 = Max(Sum —1,0), T, = Prod and T = Min.

An operation (shortly O,) is a binary operation @ on [0,00) which 1s
associative, commutative, nondecreasing in each place and for which 6(0,z) =
z for all z > 0. _

The Op — s, 61 = Sum (which is the classical Sum) and ., = Max will
be of principal interest in what follows.

3. Some probabilistic generalizations of the submeasure con-
cept

In [8], the author gives the following probabilistic generalisations of the
submeasure concept.

Definition 3.1. Let S be a ring of subsets of a fized set S and a map-
ping v : S — Dy (v(A) will be denoted by va) such that:
(m1) A=0 < valz) =¢eo(z), >0
(m2) ACB= valz) <vp(z), >0
(0m3) vauB(0(z,y)) < Tlva(z),v8(y)|z,y >0, A, B S
where T is a fized t-norm. The mapping ~ is called 6-Menger submeasure.
The triplet (S,~,T) is named a §-Menger ring.

For 6 = #; = Sum the mapping + is called Menger submeasure and for
0 = 0 = Max we have the non Archimedean Menger submeasure.

Remark 3.2. If the map F : SxS — D, is defined by F(A4, B) = vanB
then (S, F,T) is a §-semiMenger space under the t-norm T, and the #-Menger
semimetric on S is translation invariant.
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Theorem 3.3. If (S,v,T) is a ring with Menger submeasure and
Supy«1 IT'(z,x) = 1, then the family {U(e,A); € > 0, A € (0,1)} U(e, A)
{(A,B) :vanp(e) > 1=A or {V(A) : A€ (0, 1)} V(A) = {(AvB)>'YAAB(/\) >
1 — A} is a base for a metrizable uniformity or S which is called (g, \)-
uniformity of F-uniformity.

The proof can easily be reproduced.

As it is shown in [8] the submeasure -y can generate an uniformity on &
in a more general situation.

Definition 3.4. The mappings v which verifies the azioms (mq), (ma)
and (Hmg), where

(V)e > 0,(3)6 > 0 such that 1 —y4(6) < 0,1 —yp(0) < =
(Hmg) =1—vyauple) <e, ABEeS
is said to be a probabilistic H-submeasure.
In [8] a slight generalization of (Hmg) formulated in terms of additive
generators for ¢t-norms is given and the notion of probabilistic f-submeasure
is introduced.

Definition 3.5. The mapping v which verifies the azioms (my), (m2)
and (fms), where

(Ve > 0, (3)6 > 0 such that f o va(8) < 6, fovp(6) < 6=
(fms) = fovaup(e) <e ‘

and f :[0,1] — [0,00) is a continuous strictly decreasing function such that
f(1) =0, is called probabilistic f-submeasure.

Theorem 3.6. If (S,v) is a ring with probabilistic f-submeasure, then
the family {Vy(X); X > 0}, Vi(A) = {(4, B); fovanr(A) < A} generates a
metrizable uniformity on S.

The proof can be obtained without difficulty.

A natural generalization of the submeasure notion can be made accord-
ing to the probabilistic generalizations of the metric notion obtained by A. N.
Serstnev using semigroup operations on D, namely t-functions.

A t-function (or triangular function) is a binary operation on D which
is associative, commutative, nondecreasing in each place and which has &g as
identity. An important example is 7 = 7 defined by

(F,G)(z) = sup T(F(u),G(v))
utv=z

where T is a left continuous t-norm.
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Definition 3.7. Let § be a ring of subsets of a fixed set S. A mapping
v : 8 — Dy which verifies the azioms (my), (ma) and (Sms) where:

(SmS) YAUB Z T(’YA) ’YB)a A7 BeS
where T is a t-function, is called o Serstnev submeasure under the t function 7.

Remark 3.8. If 7" is a left continuous 7" norm, and F : S x § — Dy,
F(A,B) = vanp, then (S, F,7r) is a Serstnev space if (S, F,T) is a Menger
space.

4. Submeasures with probabilistic structures

In the sequal we define a general form of submeasure with probabilistic
structure in such way that the topological ring or sets induced is a uniform
space.

Let V be a family of subsets of D with the properties:

() a€V=¢egca

() veV,veV=>IweV, wCunu

(v3) [GeEDy,G>FeueV|=Geu

that is V is a filter base at g9 on D, compatible with relation >.

Definition 4.1. Let S be a ring of subsets of a fired set S. A mapping
v:8 — Dy such that:
(1) A=0 < va(z) =eo(z), 2>0
(m2) AC B=v4(z) 2 v8(z), >0
(PSm3) (MpveV, BueV; (ya €y, y8 €u) = YauB €V
is called submesaure with probabilistic V-structure and (S,~,V) will be called
a ring with probabilistic V-structure.

Remark 4.2. If the map F : SxS — D, is defined by F(A, B) = yanp
then (S,F,V)) is a probabilistic metric structure [9].

Example 4.3. (Submeasure with probabilistic S-structure). Let
B : Dy — [0,00) be a decreasing mapping which satisfies 8(eg) = 0. For every
h > 0 we define V, = {F € Dy;B(F) < h} and let Vg = {Vi}pso. It is
obvious that Vs satisfies (v1), (v2), (v3).

A mapping v which verifies (m1), (mg) and (PSgms), where

(Pngg)
(M)t > 0(3)h > 0; (B(y4) < h, B(yB) < h) = B(yauB) <t, A,B€S

will be called a submeasure with probabilistic S-structure.
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a) Probabilistic H-submeasure
Let dz, be the modified Levy distance [13], defined by:
dr(F,G) = inf {h > 0|G(z) < F(z + k) + b and F(z) < G(z +h) + h,

1
for all z € (0, E) }

If B(F) = dL(F,e0) = inf{h|F(h+) > 1 — h} then, because F'(t) > 1—t <
dr(F,e9) <t ([13] §4.3), we obtain the probabilistic H-submeasure.

b) Probabilistic f-submeasure

Let f : [—z,1] — [0,00] be a fixed continuous strictly decreasing func-
tion such that f(1) =0 and f(—z) = co where z > 0 and K5 : D4 — [0, ]
is the function defined by:

K5(B) = sup{t| t < foB(1)}.

If § = Ky then we obtain the probabilistic f-submeasure. _
Example 4.4. (V-Serstnev submeasure under the ¢ operation).
Let V be a family of subsets of D, which satisfies (11), (v2), (v3) and ¢ be
a binary operation on D, such that ¢(eg,ep). We say that ¢ is V-continuous
at (eg,€0) if: Vv €V, Qu eV, F,G € u= ¢(F,G) € v.
A V-Serstnev submeasure under ¢ is a mapping v : S — D, which
verifies (my), (mg) and (VSm3), where

(VSms) Muv eV, (ueV:p(va,vs) Eu=>vauB€v, A BeS.

If v is a V-Serstnev submeasure under ¢ and ¢ is continuous at (g, £9),
then v is a submeasure with probabilistic V-structure.

Indeed, let v € V be given and u be its correspondent from (VSms).
Since ¢ is continuous at (€g,€g) then there exists w € V such that y4,v5 €

w = @(Y4,YB) € U
For this w we have:

YA €w, YB € w = ¢(74,7B) €Eu=>YauB €v, A,B€S.

If v is a Serstnev submeasure under the ¢-function 7 then ~ is a V-
Serstnev submeasure under 7.

Since F' > G = d1,(G, &) > dr(F, g9) we obtain that if 7 is a continuous
at (e9,¢€0) t-function (in D4, dy) then the Serstnev submeasure under 7 is a
probabilistic H-submeasure.
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5. Uniformities on ring of sets induced by submeasures with
probabilistic structures

Let (S,~,v) be a ring with probabilistic v-structure. For every v € v

we define:
Uy, ={(4,B) € § xS; yanp € v} and let U} = {U,}yeu.

Theorem 5.1. U} is a base for a uniformity on S (which we will call
the v — v-uniformity).

Proof. It is sufficient to prove that: (V)U, € U} = (3)U, € U)} such
that.

Uy DUyoU,={(A,B)eSxS; IC €S, (A C)eU,, (C,B)€U,}.

Indeed, let v € v be given and u € v be its corespondent from (PSmyg).

For (A, B) € Uy, o Uy, there exists C € S such that

(A,C) €U, < vanc €uvand (C,B) €U, <= ~vcaB € u.
Then, since:
YAAB = Y(AAC)A(CAB) 2= Y(AAC)U(CAB) €V
it follows that
vanB €Ev <= (A,B) € U,.

Corollary 5.2. If 7 is a t-function such that the mapping T continuous
at (e9,€0) (in (D4,dr)) then for every ring with the Serstnev submeasure
under T, the family:

U={UM}rep1), UQR)={(A, B); vaas(A) >1—- A}

18 a uniformily base on S.
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