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A NOTE ON THE POST’S COSET THEOREM

Janez Usan and Malisa Zizovié

Abstract. In this paper a proof of Post’s Coset Theorem is pre-
sented. The proof uses from Theory of n—groups, besides the definition
of n—groups ([ [1]];1.1), the description of n—group as an algebra with
the laws of the type < n,n—1,n—2 > . ( [8];1.2,1.3).

1. Preliminaries

Definition 1.1. Let n > 2 and let (Q, A) be an n—groupoid. We say
that (Q, A) is a Dornte n—group [briefly: n—group/ iff is an n—semigroup and
an n—quastgroup as well*.

Proposition 1.2. [8] Let n > 2 and let (@, A) be an n—groupoid. Then
the following statements are equvivalent: (i) (@, A) is an n—group; (ii) there
are mappings ~! and e respectively of the sets Q™! and Q"2 into the set
Q such that the following laws hold in the algebra (Q, {4,7!,e}) [of the type
<mn—1n—2ﬂ

(2) A(2]™% A(@)3?), 220-1) = Al Ale2™),

(b) Ale (a? 3,a77 % z) =z and

(c) A((a?™? @)™, a7 7% a) = e(a7™?); and
(4i1) there are mappings ~'and e respectively of the sets Q"1 and Q"2 into
the set @ such that the following laws hold in the algebra (@, {4,7!,e}) [of
the type < n,n—1,n — 2 >]

(@ AA@ED), 237" = Alzy, A@5™), 2251,

(b) A(z,a7% e(a??)) = z and

@ Ala, ", (@2, 0)7) = e(al ™).
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* A notion of an n—group was introduced by W. Dornte in [1] as a generalization of the
notion of a group. See, also [3-5]. '
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Remark 1.3. e is an {1,n}—neutral operation of n—grupoid (@, A) iff
algebra (Q,{A,e}) of type < n,n — 2 > satisfies the laws (b) and (b) from
1.2 [6]. Operatzon -1 from I 2 /(c) (')/ is a genemlzzatwn of the mversmg
ogefation 9n g groyp i~ (1 HT 1 { ;

Definition 1.4. Let (Q B) be an n— group01d and n > 2 Then 1)

1 def )
B'= Bj; and 2) for eve‘ry k& N idfor glery” :c(k+1)(” D+ ¢ Q

ktl n— de n— k n
B <x§,k.“?5 ”“) < BBk ”“),wigié(w”“)

T 892815 100’

Prop051t10n 1.5. Let (Q B) be an n— sengro“,p? 2 and ( j) €
NZ. Then, for every xtzﬂ)(” D+ € Q and for every t € {1,. (n —1)+1}
the following equality holds
I (i) (n—1)+1 Loyq i(n—1 it+j)(n-1)+1
B (o 0D = Batt, BafH ), o5

2. Augxiliary proposition -,

‘Proposition 2.1 Let'n'> 2 and’ let: (Q A) be an n— group Also, et
k(ﬁ ‘1) bl(n 1) ¢ be arbztmry clements of the se_t‘Q sych that the followmg
equalzty holds R R Rl e S Heoaoat]

k- 1 > Hicd o
A ) = AET ) (e a @Y 2 Al bﬂ;”)/,a_
Then for all z e Q the follovmg .equality holds ... | . . . 7
k :
AV 2y = AW, 2) A,k Y) = A b“"‘”)/“
Sketch of the proof. A(al(" n )_, A( ﬁ(w_l) ¢) :> s
k e . . 10
A(A" Y, ), 72 (c’f 2,07 -*=\(A<A<b“”‘” 2, (e} )
k41 e a0 wrdd [
A e () = A(b“’*‘ 7c§%—'2»,<c?—2;c>~1>=>v
A K1) A (e, o ,(cg 2,6)—” ) = A :1> Ale, o2, (¢ 207 =
k R ; ¢ T
A0 (2 = A SR = SHIB,
k n— n— n— T 'n—.":'\" B ()
A(A@@" 7 e(ef ™), ) = A(A(b“ e e e O

k+1 -4 3 SAIRLY
A (@™ (e 2) > Y e(c’f 2) 7%, 5) =

,_A<a1” DA, ¢ a)) = A(b“" N A( (PR m)) =
A = A.@if"?lhx) i bosubirti s quoms—n 15 1o 100 A
/1 2-1.5]. O
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Proposition 2.2. Let n > 2 and let (Q, A) be an n—group. Also, let
af(n_l)jbll(”_l),c be arbitrary elements of the set Q) such that the following
equality holds

k I
A(a“"‘”,c) = A"V, 0)

1
[Ale, ") = Ae, )
Then the following equalzty holds
{
A, ") = A(c bl 1)) [ A, ¢) = AE™D o) ).

Sketch of the proof. A( K(n—1) ,€) = A(bt(n_l),c) &

k+1 L+l
A (e, alf(n D,c,ﬁ = Al bl(n Ve, g e

k !
A(A(e, a6, cn72) = A(A(e, "), 6,7 7?)

k l
Ale, a]f(n 1)) = A(c,bl(n—l))
[:1.1 - cancellation laws, 1.5 ]. O

3. A proof of the Post’s Coset Theorem

Theorem 3.1 (Post’s Coset Theorem [2]*): Every n—group has a cov-
ering group.
Proof. Let (Q, A) be an n—group.
1) Ifn =2, (Q,A) is an ordinary group and hence is its own covering
group.
2) The case n > 3:
Let T" be the set of all sequence over @. Also, let the multiplication in
T" be defined as the juxtaposition:

i« o]l b
for all at,b} € T; i,j € N U{0}. Then:
1° (T, %) is a semigroup. Moreover, § [: empty sequence/ is a neutral
element of the semigroup (T, *).

Now we define the relation 6 as follows:
2° For all a,B €T

208 (3y € 1)(26 € TYA(y, o, 8) = A(y, B, 6);
[v,0,0| =k(n—1)+1, |v,8,8 =l(n—1)+ 1.
By 2°,2.1 and 2.2, we conclude that the following statements holds:

*See, also [3-5].
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3° Let o and 3 an arbitrary elements of the set I' such that the state-
ments holds: afB. Then, for each v, € I" such that |y, , 8| =k(n—-1)+1
and |v,83,8| =1(n — 1) + 1, where k,! € N, the following equality holds

k l
Ay, @, 8) = A(7,8,9).

Also, the following statements hold.

4° 6 € Con(T', ).

5 Let C(a) - C(B) C(a * B) for all o, 3 € T. Then: a) (I'/6,-) is a
semigroup; and b) C(0) is a neutral element of the semigroup (I'/6,-). [See:
1° and 4°. /

6° Let a # 0 and let for all y € @ the following equality holds

k !
Ale,y) =y [Aly, ) =]

Then a € C(0).
7° For every o € T there is at least one 8 € I' [y € I'/ such that for all
y € Q the following equality holds

k
AB,ay) =y

[Aly, @) = 4]

8° Letz €@, ye€ Qandye C(z). Theny = z.
9° Let a € Q. Then the following equality holds

Clai)----- Clan) = C(A(a1)).

The sketch of the proof of 4° :
a) For all o € T there is §,¢ € I' and k € N such that the following

equalities hold
16, a, 0| = k(n—1)+1 and
A(8,0,9) = AS, o 0)

o

b) A5, ) = A5, B,0) = A(5,5,0) = A3, t, p)
g :
c) A({;aﬂp) (5 B.¢) /\A( ﬂ p)= (5 7. ¥) =

A(S, o, 0) = A(é,ﬁ,cp) AA( B,¢) = A(S, “v,) =

k u
A(S,a,0) = A(d,7, )
[:2°,3°].
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d) aba, BB, (v, B,8] =k(n—1)+1;

k l ¢ ~
A(’Y’aiﬁ’d) = A(77a)18)6) = A(’Y)au@)é)
[:2°,3°].
The sketch of the proof of 6° :
i k k
Afer,y) =y = Alor, AT = A0 o

HA’“(a, SO0+ jfl((?), )
[1.1 - (Q, A) is an n—quasigroup, 1.5, 2° /.
The sketch of the proof of 7° -
Let n > 3. Then the following statements hold:

n—2 n—2 1 n—2 k n—2
and
(1)71—2 (k)n—Q )
b) For each a; ,..., a; ,btl,ct"_,f1 € @ and for all z € @ the following
equality holds , , \ ,
+1 n (R)*7° "5 " ()"
A(e(c 2 oh), it e(ay ),...,e(ay ), dy ,...,d; ,ba)=ua
(1)71—2 (k)n——2 .
[1.2-1.5]. (Remark: For k=t=0: a; ,...,a; ,b{=0.)

The sketch of the proof of 8~
k
a) y€ Cz) & ybz s Aae)(FB e NA(a,y,B) =
k
Ala,z,8); ke N [2°].

k k
b) A(e,y,B) = Alev,z,8) => y =z [1.1,1.5].
The sketch of the proof of 9° :

2
a) b= A(a}) & A(b, 27 ') = A(a},277Y) & bha} £1.1,1.5,2°).

b) C(b) =C(al) =Claz) -+~ Clan) [
a),4°,5°).

c) C(A(a})) = C(ar) - -+~ - Clan) [a),b)].
By 4° —7°, we conclude that (I'/6,-) is an group.
Finally, let
A(C(ar),...,Clan)) =Cla1) - -+ Clan)
for each C(a1),...,C(a,) € {C(z)|:c € Q}. Also, let
F(@)Z Cla)

for all a € Q. Then, by 8° and 9°, we conclude that the following statements
hold

def
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1) (Va; € Q)TFA(a}) = A(F(a1),...,F(ayn)); and
2) F is a bijection which maps the set @ onto the set {C(z)|z € Q}. O
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